Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania z treścią

Wyszukiwanie zadań

Kostki pozbruku mają kształt graniastosłupów prawidłowych sześciokątnych.


PIC


  • Jaka jest powierzchnia całkowita jednej kostki?
  • Jaką ilość betonu (w dm 3 ) zużyto do wyprodukowania 100 takich kostek? Wyniki podaj z dokładnością do 0,01.

W dwóch naczyniach jest woda. Gdyby z pierwszego naczynia przelano do drugiego 2 litry wody, to w obu naczyniach byłoby jej tyle samo. Gdyby zaś z drugiego do pierwszego przelano 3 litry wody, to w pierwszym naczyniu byłoby jej sześć razy więcej niż w drugim. Ile jest wody w obu naczyniach?

Ukryj Podobne zadania

W pierwszym zbiorniku było cztery razy więcej litrów wody niż w drugim. Do każdego zbiornika wlano po 6 litrów wody. Teraz w pierwszym zbiorniku jest dwa razy więcej litrów wody niż w drugim zbiorniku. Oblicz, ile łącznie litrów wody jest w obu zbiornikach.

Trawnik ma kształt trójkąta równoramiennego o podstawie 80 m i ramionach długości 50 m. Z powierzchni trawnika postanowiono wydzielić prostokątny plac zabaw w ten sposób, że dwa z wierzchołków tego prostokąta leżą na podstawie, a pozostałe dwa na ramionach trójkąta ograniczającego trawnik (zobacz rysunek).


PIC


Oblicz wymiary a i b placu zabaw, tak, aby jego pole było największe możliwe.

Olejarnia wytwarza olej ekologiczny. Aby produkcja była opłacalna, dzienna wielkość produkcji musi wynosić co najmniej 480 litrów i nie może przekroczyć 530 litrów (ze względu na ograniczone moce produkcyjne). Przy poziomie produkcji (480+ x) litrów dziennie przeciętny koszt K (w złotych) wytworzenia jednego litra oleju jest równy

 22x 2 − 62 1,5x + 23430 K(x ) = -----------------------, gdzie x ∈ [0,50] 480+ x

Oblicz, ile litrów oleju dziennie powinna wytworzyć olejarnia, aby przeciętny koszt produkcji jednego litra oleju był najmniejszy (z zachowaniem opłacalności produkcji). Oblicz ten najmniejszy przeciętny koszt.

Ukryj Podobne zadania

Linia produkcyjna w fabryce elektroniki wytwarza jeden rodzaj kart graficznych. Aby produkcja była opłacalna, dzienna wielkość produkcji musi wynosić co najmniej 576 kart i nie może przekroczyć 620 kart (ze względu na ograniczone moce produkcyjne). Przy poziomie produkcji (5 76+ x) kart graficznych dziennie przeciętny koszt K (w złotych) wytworzenia jednej karty jest równy

 2 K (x) = 2-3x-−--103,5x-+-42-4764, gdzie x ∈ [0,44] 576+ x

Oblicz, ile kart graficznych powinna wytwarzać dziennie ta linia produkcyjna, aby przeciętny koszt produkcji jednej karty był najmniejszy (z zachowaniem opłacalności produkcji). Oblicz ten najmniejszy przeciętny koszt.

W pewnej klasie liczba dziewcząt stanowi 60% liczby osób w tej klasie. Gdy 6 dziewcząt wyjechało na mecz siatkówki, w klasie pozostało tyle samo chłopców, ile dziewcząt. Oblicz, ile osób liczy ta klasa oraz ilu jest w niej chłopców.

Ukryj Podobne zadania

W pewnej klasie liczba chłopców stanowi 75% liczby dziewcząt. Gdyby do tej klasy doszło jeszcze czterech chłopców, to liczba chłopców byłaby równa liczbie dziewcząt. Ile dziewcząt jest w tej klasie? Zapisz obliczenia.

W pewnej klasie liczba chłopców stanowi 60% liczby wszystkich uczniów. Gdyby 6 chłopców przeniosło się do innej klasy, w klasie pozostałoby po tyle samo dziewcząt i chłopców. Oblicz ile osób liczy ta klasa oraz ile jest w niej dziewcząt.

W pewnej klasie liczba chłopców stanowi 80% liczby dziewcząt. Gdyby do tej klasy doszło jeszcze trzech chłopców, to liczba chłopców byłaby równa liczbie dziewcząt. Ile dziewcząt jest w tej klasie? Zapisz obliczenia.

W pewnej klasie liczba dziewcząt stanowi 60% liczby wszystkich uczniów. Gdyby 6 dziewcząt przeniosło się do innej klasy, w klasie pozostałoby po tyle samo dziewcząt i chłopców. Oblicz ile osób liczy ta klasa oraz ile jest w niej chłopców.

Jeżeli do licznika i do mianownika nieskracalnego dodatniego ułamka dodamy połowę jego licznika, to otrzymamy 47 , a jeżeli do licznika i do mianownika dodamy 1, to otrzymamy 1 2 . Wyznacz ten ułamek.

Ukryj Podobne zadania

Jeżeli do licznika i do mianownika dodatniego ułamka dodamy jego licznik, to otrzymamy 25 , a jeżeli do licznika i do mianownika dodamy 6, to otrzymamy 1 2 . Wyznacz ten ułamek.

Jeżeli do licznika i do mianownika nieskracalnego dodatniego ułamka dodamy jego licznik, to otrzymamy 37 , a jeżeli do licznika i do mianownika dodamy 1, to otrzymamy 1 3 . Wyznacz ten ułamek.

Jeżeli do licznika i do mianownika nieskracalnego dodatniego ułamka dodamy jego licznik, to otrzymamy 59 . Wyznacz ten ułamek.

Jeżeli do licznika pewnego nieskracalnego ułamka dodamy 32, a mianownik pozostawimy niezmieniony, to otrzymamy liczbę 2. Jeżeli natomiast od licznika i od mianownika tego ułamka odejmiemy 6, to otrzymamy liczbę 817 . Wyznacz ten ułamek.

Dany jest dodatni ułamek nieskracalny. Jeżeli dodamy do licznika ułamka 20% mianownika, a następnie od mianownika odejmiemy 20% zmienionego licznika, to otrzymamy 1,25. Jeżeli natomiast do mianownika danego ułamka dodamy 25% licznika, a od licznika odejmiemy 1, to otrzymamy 0,5. Wyznacz ten ułamek.

Jeżeli do licznika pewnego nieskracalnego ułamka dodamy 45, a mianownik pozostawimy niezmieniony, to otrzymamy liczbę 2. Jeżeli natomiast od licznika i od mianownika tego ułamka odejmiemy 3, to otrzymamy liczbę 12 . Wyznacz ten ułamek.

Czas połowicznego rozpadu pierwiastka to okres, jaki jest potrzebny, by ze 100% pierwiastka pozostało 50% tego pierwiastka. Oznacza to, że ilość pierwiastka pozostała z każdego grama pierwiastka po x okresach rozpadu połowicznego wyraża się wzorem  (1)x y = 2 .

W przypadku izotopu jodu 131I czas połowicznego rozpadu jest równy 8 dni. Wyznacz najmniejszą liczbę dni, po upływie których pozostanie z 1 g 131 I nie więcej niż 0,125 g tego pierwiastka.

Ukryj Podobne zadania

Czas połowicznego rozpadu pierwiastka to okres, jaki jest potrzebny, by ze 100% pierwiastka pozostało 50% tego pierwiastka. Oznacza to, że ilość pierwiastka pozostała z każdego grama pierwiastka po x okresach rozpadu połowicznego wyraża się wzorem  (1)x y = 2 .

W przypadku izotopu radu 226Ra czas połowicznego rozpadu jest równy 1600 lat. Po ilu latach z 1 g 226 Ra pozostanie nie więcej niż 6,25% masy tego pierwiastka?

Firma zatrudniła w tym samym czasie małżeństwo na następujących warunkach: mąż otrzymał za pierwszy przepracowany miesiąc 1200 zł, a żona 1600 zł. Pensja męża będzie wzrastać co miesiąc o 100 zł, a żony o 40 zł.

  • Po przepracowaniu którego miesiąca, żona odbierze pensję w wysokości 2680 zł?
  • Ile miesięcy muszą przepracować małżonkowie, aby suma zarobków męża stanowiła 150% sumy zarobków żony (licząc od początku zatrudnienia)?

Trasa rowerowa wokół jeziora ma długość 15 km. Dwóch rowerzystów wyrusza z tego samego miejsca i okrąża jezioro poruszając się w tym samym kierunku. Średnia prędkość drugiego z nich jest większa od średniej prędkości pierwszego o 5 km/h. Oblicz po jakim czasie dojdzie do ponownego spotkania rowerzystów.

Działkę w kształcie trapezu podzielono przekątnymi na 4 działki. Spośród tych czterech działek wskaż dwie o równych polach. Odpowiedź uzasadnij.

Maszynistka miała do przepisania książkę liczącą 586 stron. Przez pierwsze trzy dni przepisywała po 14 stron dziennie. Następnie postanowiła, że czwartego dnia przepisze o dwie strony więcej niż trzeciego dnia i każdego następnego dnia przepisze o dwie strony więcej niż dnia poprzedniego. W ciągu ilu dni przepisała całą książkę?

Ukryj Podobne zadania

Piotrek przez pewien czas rozwiązywał zadania z matematyki. Pierwszego dnia rozwiązał 10 zadań, a każdego kolejnego dnia następnego rozwiązywał o 5 zadań więcej niż w dniu poprzednim. W sumie rozwiązał 220 zadań. Oblicz, przez ile dni rozwiązywał zadania i ile zadań rozwiązał ostatniego dnia.

Dwa samochody odbyły podróż z miejscowości A do odległej o 480 km miejscowości B . Drugi z samochodów jechał ze średnią prędkością większą o 20 km/h od średniej prędkości pierwszego samochodu, a czas przejazdu pierwszego samochodu był o 72 minuty dłuższy od czasu przejazdu drugiego samochodu. Oblicz ile czasu zajęła podróż każdemu z samochodów.

Ukryj Podobne zadania

Miasto A i miasto B łączy linia kolejowa długości 210 km. Średnia prędkość pociągu pospiesznego na tej trasie jest o 24 km/h większa od średniej prędkości pociągu osobowego. Pociąg pospieszny pokonuje tę trasę o 1 godzinę krócej niż pociąg osobowy. Oblicz czas pokonania tej drogi przez pociąg pospieszny.

Dwóch turystów przebyło tę samą trasę o długości 84 km, przy czym każdy z nich przechodził dziennie tę samą liczbę kilometrów. Pokonanie tej trasy zajęło drugiemu turyście o 3 dni dłużej niż pierwszemu, a pierwszy turysta przechodził dziennie o 9 km więcej od drugiego. Oblicz, ile kilometrów dziennie przechodził każdy z turystów.

Dwa samochody odbyły podróż z miejscowości A do odległej o 252 km miejscowości B . Średnia prędkość samochodu osobowego na tej trasie była o 24 km/h większa od średniej prędkości samochodu ciężarowego. Oblicz ile czasu zajęła podróż samochodowi osobowemu jeżeli pokonał on tę trasę w czasie o 72 minuty krótszym niż samochód ciężarowy.

Wyznacz wszystkie liczby trzycyfrowe, w których cyfra setek jest o 3 większa od cyfry dziesiątek i 2 razy większa od cyfry jedności.

Masa m leku L zażytego przez chorego zmienia się w organizmie zgodnie z zależnością wykładniczą

m (t) = m 0 ⋅(0,6 )0,25t,

gdzie:

  • m 0 – masa (wyrażona w mg) przyjętej w chwili t = 0 dawki leku,

  • t – czas (wyrażony w godzinach) liczony od momentu t = 0 zażycia leku.

Liczby m(2 ,5) , m (4,5) , m (6,5) w podanej kolejności tworzą ciąg geometryczny. Oblicz iloraz tego ciągu.
Ukryj Podobne zadania

Masa m leku L zażytego przez chorego zmienia się w organizmie zgodnie z zależnością wykładniczą

m (t) = m 0 ⋅(0,7 )0,25t,

gdzie:

  • m 0 – masa (wyrażona w mg) przyjętej w chwili t = 0 dawki leku,

  • t – czas (wyrażony w godzinach) liczony od momentu t = 0 zażycia leku.

Liczby m(5 ,5 ) , m (7) , m (8,5) w podanej kolejności tworzą ciąg geometryczny. Oblicz iloraz tego ciągu.

Firma X wytwarza pewien produkt D . Badania rynku pokazały, że związek między ilością Q produktu D , jaką firma jest w stanie zbyć na rynku, a ceną P produktu jest następujący:

P(Q ) = 90 − 0,1Q , dla Q ∈ [0 ,900],

gdzie P jest ceną za jednostkę produktu w złotych, a Q – ilością produktu w tys. sztuk.

Koszty K wytworzenia produktu D zależą od ilości Q wytwarzanego produktu następująco:

K(Q ) = 0,00 2Q 3 + Q 2 + 29,99 85Q + 5 0,

gdzie K jest kosztem produkcji w tys. zł. Oblicz, przy jakiej wielkości produkcji firma X osiąga największy dochód. Wynik podaj zaokrąglony z dokładnością do 100 sztuk.

Liczbę dodatnią a przedstaw w postaci sumy dwóch takich składników, aby suma ich kwadratów była najmniejsza.

Łódź musi płynąć 60 km w dół rzeki, a następnie 10 km w górę rzeki. Prędkość prądu rzeki wynosi 5 km/godz. Jaka powinna być prędkość własna łodzi, aby cała podróż nie trwała dłużej niż 10 godzin?

Koparka, pogłębiająca rów melioracyjny, usypała kopiec w kształcie stożka. Tworząca tego stożka jest nachylona do płaszczyzny podstawy pod kątem, którego tangens jest równy 1,5. Przyjmując π ≈ 3 , obliczono, że obwód podstawy kopca jest równy około 12 m. Oblicz, ile kursów będzie musiała wykonać ciężarówka, aby wywieźć wykopany piasek, jeżeli jednorazowo może zabrać  3 2 m piasku. Przyjmij również, że π ≈ 3 .

Jeden z pracowników pewnej firmy otrzymuje stałą pensję miesięczną za 168 przepracowanych godzin oraz dodatkowe wynagrodzenie za nadgodziny. Stawka za godzinę nadliczbową jest o 50% większa niż stawka za godzinę etatową. W styczniu pracownik ten miał 8 nadgodzin i otrzymał razem 2700 zł.

  • Oblicz stawkę za godzinę nadliczbową oraz stawkę za godzinę etatową.
  • Napisz wzór funkcji wyrażającej wynagrodzenie pracownika w zależności od liczby przepracowanych godzin nadliczbowych.

Zmieszano 1 kg solanki o zawartości 18% soli i 2 kg solanki o zawartości 15% soli. Ile procent soli zawiera ta mieszanina?

Ukryj Podobne zadania

Zmieszano 2 kg solanki o zawartości 12% soli i 1 kg solanki o zawartości 18% soli. Ile procent soli zawiera ta mieszanina?

Szklankę octu o stężeniu 10% zmieszano z trzema szklankami octu sześcioprocentowego. Jakie jest stężenie otrzymanej mieszanki?

Strona 14 z 17
spinner