Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria

Wyszukiwanie zadań

Podstawą ostrosłupa ABCDW jest prostokąt ABCD . Krawędź boczna DW jest wysokością tego ostrosłupa. Krawędzie boczne AW ,BW i CW mają następujące długości: |AW | = 6,|BW | = 9,|CW | = 7 . Oblicz objętość tego ostrosłupa.


PIC


Ukryj Podobne zadania

Podstawą ostrosłupa ABCDW jest kwadrat ABCD . Krawędź boczna DW jest wysokością tego ostrosłupa. Krawędzie boczne AW i BW mają następujące długości:  √ -- |AW | = 6,|BW | = 3 . Oblicz pole powierzchni całkowitej tego ostrosłupa.


PIC


Podstawą ostrosłupa ABCDW jest kwadrat ABCD o polu 2. Krawędź boczna DW jest wysokością tego ostrosłupa. Długości krawędzi bocznych AW i BW spełniają warunek  √ -- 2 |BW | = 6|AW | . Oblicz objętość tego ostrosłupa.


PIC


Wysokość ostrosłupa prawidłowego trójkątnego jest równa 4, a krawędź podstawy ma długość 1. Ostrosłup przecięto płaszczyzną, która przechodzi przez krawędź podstawy oraz jest prostopadła do przeciwległej krawędzi bocznej. Oblicz pole powierzchni tego przekroju.

W graniastosłupie prawidłowym sześciokątnym poprowadzono płaszczyznę, która przechodzi przez krawędź podstawy oraz przez środek symetrii graniastosłupa. Płaszczyzna ta wyznacza przekrój o polu równym  √ -- 48 2 . Stosunek wysokości graniastosłupa do długości krawędzi podstawy jest równy √ -- 5 . Oblicz objętość tego graniastosłupa.

W ostrosłupie trójkątnym wszystkie krawędzie boczne i dwie krawędzie podstawy mają długość b , a kąt między równymi bokami podstawy ma miarę α . Oblicz objętość tego ostrosłupa.

W stożek o promieniu podstawy 6 i wysokości 8 wpisujemy graniastosłupy prawidłowe sześciokątne tak, że jedna podstawa jest zawarta w podstawie stożka, a pozostałe wierzchołki należą do powierzchni bocznej stożka. Oblicz objętość graniastosłupa o największym polu powierzchni bocznej.

W stożek o wysokości 10 wpisano kulę o promieniu 4. Oblicz pole powierzchni całkowitej stożka.


PIC


Podstawą graniastosłupa prostego o objętości V jest równoległobok o bokach długości a i b . Wykaż, że pole powierzchni bocznej tego graniastosłupa jest nie mniejsze niż  ( ) 2V 1 + 1 a b .

Dany jest graniastosłup czworokątny prosty ABCDEF GH o podstawach ABCD i EF GH oraz krawędziach bocznych AE , BF , CG , DH . Podstawa ABCD graniastosłupa jest rombem o boku długości 8 cm i kątach ostrych A i C o mierze 60 ∘ . Przekątna graniastosłupa CE jest nachylona do płaszczyzny podstawy pod kątem  ∘ 6 0 . Sporządź rysunek pomocniczy i zaznacz na nim wymienione w zadaniu kąty. Oblicz objętość tego graniastosłupa.

Ukryj Podobne zadania

Podstawą graniastosłupa prostego jest romb. Krótsza przekątna rombu tworzy z krawędzią podstawy kąt 60∘ i ma długość  √ -- 4 3 . Dłuższa przekątna graniastosłupa tworzy z dłuższą przekątną rombu kąt 6 0∘ . Oblicz objętość graniastosłupa.

W graniastosłupie prostym o podstawie rombu krótsza przekątna podstawy ma długość 6 cm i tworzy z krawędzią podstawy kąt 60 ∘ . Kąt między krótszą przekątną rombu i krótszą przekątną graniastosłupa ma miarę 45∘ . Oblicz objętość graniastosłupa.

Rozważmy wszystkie graniastosłupy prawidłowe trójkątne o objętości V = 2 . Wyznacz długości krawędzi tego z rozważanych graniastosłupów, którego pole powierzchni całkowitej jest najmniejsze. Oblicz to najmniejsze pole.

Ukryj Podobne zadania

Rozważmy wszystkie graniastosłupy prawidłowe czworokątne o objętości V = 4 . Wyznacz długości krawędzi tego z rozważanych graniastosłupów, którego pole powierzchni całkowitej jest najmniejsze. Oblicz to najmniejsze pole.

Połówkę koła o promieniu 12 zwinięto w stożek. Oblicz objętość i kąt rozwarcia tego stożka jeżeli długość łuku tej połówki koła jest obwodem podstawy, a jej promień jest tworzącą stożka.

Długości krawędzi podstawy prostopadłościanu są równe 5√2- 2 cm , a krawędź boczna ma długość 2 cm. Oblicz pole przekroju tego graniastosłupa płaszczyzną zawierającą przekątną podstawy i nachyloną do płaszczyzny podstawy pod kątem 60 ∘ . Sporządź rysunek i zaznacz na nim przekrój oraz kąt jego nachylenia do płaszczyzny podstawy.

Mówimy, że walec jest wpisany w graniastosłup, jeżeli podstawy walca są zawarte w podstawach graniastosłupa, a powierzchnia boczna walca jest styczna do każdej ze ścian bocznych graniastosłupa (zobacz rysunek).


PIC


Rozpatrujemy wszystkie graniastosłupy prawidłowe sześciokątne takie, że suma długości promienia i wysokości walca wpisanego w ten graniastosłup jest równa K . Oblicz pole powierzchni całkowitej tego z rozważanych graniastosłupów, którego objętość jest największa.

Krawędź podstawy ostrosłupa trójkątnego prawidłowego jest równa 6. Jego objętość jest równa  √ -- 9 3 . Wyznacz długość wysokości ściany bocznej ostrosłupa.

Podstawą ostrosłupa ABCDE jest kwadrat o boku długości 12. Spodek F wysokości EF ostrosłupa jest środkiem krawędzi AD . Wiedząc, że dwie krótsze krawędzie boczne mają tę samą długość, równą 10, oblicz tangens kąta nachylenia krawędzi EC do płaszczyzny podstawy.


ZINFO-FIGURE


Środki ścian czworościanu foremnego T 1 są wierzchołkami czworościanu T 2 . Oblicz stosunek objętości czworościanów T1 i T2 .

Dany jest ostrosłup prawidłowy czworokątny o krawędzi podstawy b i kącie nachylenia krawędzi bocznej do krawędzi podstawy α . Oblicz pole przekroju płaszczyzną przechodzącą przez wierzchołek i równoległą do krawędzi podstawy oraz nachyloną do płaszczyzny podstawy pod kątem β . Podaj konieczne założenia dotyczące kąta α .

Podstawą graniastosłupa prostego ABCDA 1B1C1D 1 jest trapez równoramienny ABCD wpisany w okrąg o środku O i promieniu R . Dłuższa podstawa AB trapezu jest średnicą tego okręgu, a krótsza ma długość a (zobacz rysunek). Przekątna graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem o mierze α . Wyznacz objętość tego graniastosłupa jako funkcję promienia R , długości podstawy a i miary kąta α .


PIC


Dany jest graniastosłup prosty ABCDEF GH o podstawie prostokątnej ABCD . Przekątne AH , AF i HF ścian bocznych tworzą trójkąt ostrokątny o polu 11,25 (zobacz rysunek). Stosunek długości odcinka HF do promienia okręgu opisanego na trójkącie AF H jest równy 30 : 17. Oblicz wysokość h tego graniastosłupa.


ZINFO-FIGURE


Długość krawędzi bocznej ostrosłupa prawidłowego czworokątnego ABCDS jest równa 12 (zobacz rysunek). Krawędź boczna tworzy z wysokością tego ostrosłupa kąt α taki, że tg α = 2√-- 5 . Oblicz objętość tego ostrosłupa.


PIC


Ukryj Podobne zadania

Długość krawędzi bocznej ostrosłupa prawidłowego czworokątnego ABCDS jest równa 12 (zobacz rysunek). Krawędź boczna tworzy z wysokością tego ostrosłupa kąt α taki, że tg α = 3√-- 7 . Oblicz objętość tego ostrosłupa.


PIC


W prostopadłościanie ABCDEF GH dane są:

 √ ---- √ ---- tg β = 9, |BG | = 2 1 30, |BH | = 2 19 4, 7

gdzie odcinek BH jest przekątną prostopadłościanu, odcinek BG jest przekątną ściany bocznej BCGF , β jest miarą kąta GBC .


ZINFO-FIGURE


Oblicz pole powierzchni całkowitej prostopadłościanu ABCDEF GH .

Strona 15 z 28
spinner