Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Prawdopodobieństwo/Z definicji/Zbiory liczb

Wyszukiwanie zadań

Ze zbioru liczb {1,2,3,...,n } , dla n ≥ 4 losujemy bez zwracania dwie liczby a i b . Oblicz n jeżeli wiadomo, że prawdopodobieństwo tego, że wylosowane liczby a i b spełniają nierówność

|a − b| > 3

jest równe 50 63 .

Niech n będzie liczbą naturalną. Ze zbioru liczb {1,2,3 ,...,2n+ 1} losujemy dwie liczby (mogą być równe). Oblicz prawdopodobieństwo, że suma wylosowanych liczb będzie większa od 2n + 1 .

Ze zbioru wszystkich liczb trzycyfrowych losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A polegającego na wylosowaniu liczb, których iloczyn jest liczbą nieparzystą.

W zbiorze Z = {− 2n + 1,− 2n + 3,...,− 3,− 1,0,1,3,...,2n − 3,2n − 1} , gdzie n > 4 jest liczbą naturalną, zmieniono znaki na przeciwne trzem losowo wybranym liczbom. Wiadomo, że prawdopodobieństwo tego, że suma wszystkich liczb w zbiorze nie uległa zmianie wynosi 1-- 161 . Wyznacz n .

Ukryj Podobne zadania

Ze zbioru liczb {0,1,− 1,3 ,− 3 ,5 ,−5 ,...,2n+ 1,− 2n − 1} , gdzie n jest ustaloną liczbą naturalną, większą od 4, losujemy jednocześnie trzy liczby. Niech A oznacza zdarzenie: suma wylosowanych liczb nie ulegnie zmianie, jeżeli w wylosowanych liczbach zmienimy znaki na przeciwne. Wiedząc, że  -1- P (A ) = 133 , oblicz n .

W grze liczbowej Express Lotek losowanych jest pięć spośród liczb 1,2,3 ,...,41,42 . Gracz zawarł jeden zakład na najbliższe losowanie (czyli wytypował w kolekturze Totalizatora Sportowego pięć liczb spośród czterdziestu dwóch). Oblicz ile razy prawdopodobieństwo trafienia ’trójki’ (czyli wytypowania dokładnie 3 liczb spośród tych, które będą wylosowane) jest większe niż prawdopodobieństwo trafienia

  • piątki;
  • czwórki.

Spośród liczb naturalnych trzycyfrowych wybieramy jedną liczbę. Jakie jest prawdopodobieństwo wybrania liczby, która przy dzieleniu przez 11 daje resztę 3.

Ukryj Podobne zadania

Spośród liczb naturalnych trzycyfrowych wybieramy jedną liczbę. Jakie jest prawdopodobieństwo wybrania liczby, która przy dzieleniu przez 11 daje resztę 5.

Dane są dwa podzbiory zbioru liczb całkowitych:

K = {− 4,− 1,1,5 ,6 } i L = { −3 ,−2 ,2,3,4}.

Z każdego z nich losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczb, których iloczyn jest dodatni.

Ukryj Podobne zadania

Ze zbioru pięciu liczb {− 5,− 4,1,2,3} losujemy kolejno ze zwracaniem dwa razy po jednej liczbie. Zdarzenie A polega na wylosowaniu dwóch liczb, których iloczyn jest ujemny. Oblicz prawdopodobieństwo zdarzenia A .

Dane są dwa podzbiory zbioru liczb całkowitych:

K = {− 4,− 1,1,5 ,6} i L = { −4 ,−3 ,−2 ,2,3}.

Z każdego z nich losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczb, których iloczyn jest dodatni.

Dane są dwa podzbiory zbioru liczb całkowitych:

K = {− 4,− 1,1,3 ,7 } i L = { −4 ,−2 ,2,5,6}.

Z każdego z nich losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczb, których iloczyn jest ujemny.

Z liczb ośmioelementowego zbioru Z = { 1,2,3,4,5,6,7,9 } tworzymy ośmiowyrazowy ciąg, którego wyrazy się nie powtarzają. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że żadne dwie liczby parzyste nie są sąsiednimi wyrazami utworzonego ciągu. Wynik przedstaw w postaci ułamka zwykłego nieskracalnego.

Ze zbioru {0,1,2,3,4,...,2n } gdzie n ∈ N wylosowano jednocześnie 3 liczby. Prawdopodobieństwo, że suma wylosowanych liczb jest nieparzysta wynosi 4835 . Wyznacz ile liczb było w zbiorze.

Ze zbioru Z = { − 1,3,4,6,8,9} losujemy bez zwracania liczby x i y . Oblicz prawdopodobieństwa zdarzeń: A , B, A ∪ B jeśli:
A – suma wylosowanych liczb jest nieparzysta;
B – wylosowane liczby spełniają warunek: 25 < (x − 1)2 + y2 ≤ 100 .

Ze zbioru wszystkich liczb naturalnych czterocyfrowych, których cyfra tysięcy i cyfra setek należą do zbioru { 3,4,5,6,7,8} , a cyfra dziesiątek i cyfra jedności należą do zbioru {0,1,2 ,3 ,4} , losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy liczbę czterocyfrową, która jest podzielna przez 4.

Ze zbioru liczb dwucyfrowych losujemy jedną liczbę. Jakie jest prawdopodobieństwo, że iloczyn cyfr wylosowanej liczby jest dodatnią liczbą złożoną?

Ze zbioru liczb {1,2,3,4 ,7 ,9,10} losujemy dwie liczby (mogą się powtarzać). Oblicz prawdopodobieństwo, że suma wylosowanych liczb jest parzysta.

Ukryj Podobne zadania

Dany jest pięcioelementowy zbiór K = {5,6,7,8 ,9 } . Wylosowanie każdej liczby z tego zbioru jest jednakowo prawdopodobne. Ze zbioru K losujemy ze zwracaniem kolejno dwa razy po jednej liczbie i zapisujemy je w kolejności losowania. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że suma wylosowanych liczb jest liczbą parzystą.

Ze zbioru {1,2,3,4 ,5 ,6,7} losujemy liczbę x , a ze zbioru {− 7 ,−6 ,−5 ,−4 ,−3 ,−2 ,−1 } liczbę y . Oblicz prawdopodobieństwo tego, że x + y > 0 .

Ukryj Podobne zadania

Ze zbioru liczb {1,2,3,4 ,5,6,7} losujemy kolejno dwa razy po jednej liczbie bez zwracania. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że pierwsza z wylosowanych liczb jest nieparzysta, a ich iloczyn jest większy od 10.

Ze zbioru {1,2,3,4 ,5 ,6,7} losujemy liczbę x , a ze zbioru {− 7 ,−6 ,−5 ,−4 ,−3 ,−2 ,−1 } liczbę y . Oblicz prawdopodobieństwo tego, że x + y > 2 .

Ze zbioru {1,2,3,4 ,5 ,6,7} losujemy liczbę x , a ze zbioru {− 7 ,−6 ,−5 ,−4 ,−3 ,−2 ,−1 } liczbę y . Oblicz prawdopodobieństwo tego, że x + y < − 2 .

Ze zbioru liczb 1,2,3,4,5 losujemy kolejno trzy razy po jednej liczbie bez zwracania tworząc liczbę trzycyfrową. Oblicz prawdopodobieństwo zdarzenia A – otrzymana liczba jest mniejsza od 432.

Ukryj Podobne zadania

Ze zbioru liczb 1,2,3,4,5 losujemy kolejno trzy razy po jednej liczbie bez zwracania tworząc liczbę trzycyfrową. Oblicz prawdopodobieństwo zdarzenia A – otrzymana liczba jest większa od 324.

Ze zbioru liczb {3,4,5,6 ,7,8,9,10,11,12 } losujemy ze zwracaniem kolejno dwa razy po jednej liczbie. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że iloczyn wylosowanych liczb jest podzielny przez 3.

Ze zbioru Z = { 1,2,3,...,2n + 1} , gdzie n ∈ N wylosowano równocześnie dwie liczby. Wyznacz n , tak aby prawdopodobieństwo wylosowania liczb, których suma jest liczbą nieparzystą było większe od 713- .

Ze zbioru {1,2,3,4,5,6,7 } losujemy kolejno, bez zwracania trzy cyfry i tworzymy liczbę trzycyfrową: pierwsza wylosowana cyfra jest cyfrą setek, druga – cyfrą dziesiątek, a trzecia – cyfrą jedności. Oblicz prawdopodobieństwo zdarzenia, że otrzymana liczba ma następującą własność: różnica między największą i najmniejszą cyfrą tej liczby jest nie większa niż 3.

Spośród wszystkich czterocyfrowych całkowitych liczb dodatnich losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba będzie parzysta, a w jej zapisie dziesiętnym wystąpią dokładnie jedna cyfra 2 i dokładnie jedna cyfra 3.

Losujemy jedną liczbę całkowitą z przedziału (− 31,26) i jedną liczbę całkowitą z przedziału (− 19,57) . Oblicz prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczb, których iloczyn jest dodatni. Wynik podaj w postaci ułamka nieskracalnego.

Ukryj Podobne zadania

Losujemy jedną liczbę całkowitą z przedziału (− 29,28) i jedną liczbę całkowitą z przedziału (− 21,55) . Oblicz prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczb, których iloczyn jest ujemny. Wynik podaj w postaci ułamka nieskracalnego.

Strona 1 z 6
spinner