Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Wielomian  4 3 2 W (x) = 6x + 10x + ax − 15x + b jest podzielny przez trójmian P (x) = 3x 2 + 5x − 7 . Wyznacz liczby a i b .

Nie wykonując dzielenia, wyznacz resztę z dzielenia wielomianu W (x) = x5 + 2x4 + 3x + 1 przez P (x) = (x + 2)(x − 1 ) .

Reszta z dzielenia wielomianu  3 2 W (x) = 9bx − ax − 14bx + 15 przez trójmian (3x − 2 )2 wynosi 3. Oblicz a i b . Dla wyznaczonych wartości a i b rozwiąż nierówność W (x) ≤ 3 .

Wielomian  4 3 2 W (x) = x + 3x + ax + bx + c jest podzielny przez trójmian x 2 + 3x − 1 0 , a przy dzieleniu przez dwumian (x+ 1) daje resztę -36. Wyznacz współczynniki a,b i c wielomianu.

Dany jest wielomian W (x) stopnia n > 2 , którego suma wszystkich współczynników jest równa 4, a suma współczynników przy potęgach o wykładnikach nieparzystych jest równa sumie współczynników przy potęgach o wykładnikach parzystych. Wykaż, że reszta R(x ) z dzielenia tego wielomianu przez wielomian P(x) = (x + 1)(x− 1) jest równa R (x) = 2x + 2 .

Reszta z dzielenia wielomianu W (x) przez wielomian  4 3 2 P (x) = x + x − 3x − 4x − 4 jest wielomianem R(x) = x3 − 5x + 1 . Wyznacz resztę z dzielenia tego wielomianu przez wielomian F (x) = x 2 − 4 .

Reszta z dzielenia wielomianu W (x) przez wielomian  4 2 P (x) = x + 2x − 3 jest wielomianem R(x) = x3 − 2x2 + 2 . Wyznacz resztę z dzielenia tego wielomianu przez wielomian F (x) = x 2 − 1 .

Wielomian  3 2 W (x) = x + bx + cx− 4 jest podzielny przez trójmian kwadratowy x2 − x − 2 . Wyznacz współczynniki b i c wielomianu W (x) .

*Ukryj

Wielomian  3 2 W (x) = x + bx + cx− 6 jest podzielny przez trójmian kwadratowy x2 + x − 2 . Wyznacz współczynniki b i c wielomianu W (x) .

Wykaż, że jeżeli wielomian  6 4 2 W (x) = x + ax + bx + c jest podzielny przez trójmian x2 + x+ 1 , to jest również podzielny przez trójmian x 2 − x + 1 .

*Ukryj

Wielomian  7 5 3 W (x) = x + ax + bx + cx+ 7 jest podzielny przez wielomian x 2 + x + 1 . Wyznacz resztę z dzielenia wielomianu W (x ) przez wielomian x 2 − x + 1 .

Wyznacz resztę z dzielenia wielomianu  2 2005 W (x) = (x − 3x + 1) przez wielomian P(x) = x 2 − 4x + 3 .

Reszta z dzielenia wielomianu  5 3 2 W (x) = x + ax + x − 1 przez dwumian x 2 − 2 jest równa 1. Oblicz wartość współczynnika a .

Reszta z dzielenia wielomianu  3 2 x + px − x + q przez trójmian  2 (x + 2) wynosi 1 − x . Wyznacz pierwiastki tego wielomianu.

Wyznacz resztę z dzielenia wielomianu W (x) przez wielomian (x + 1)(x − 2 ) wiedząc, że W (− 1) = − 1 i W (2) = 2 .

*Ukryj

Wyznacz resztę z dzielenia wielomianu W (x) przez wielomian (x + 1)(x − 2 ) wiedząc, że W (− 1) = 1 i W (2 ) = − 2 .

Wyznacz resztę z dzielenia wielomianu W (x) przez wielomian (x − 1)(x + 2 ) wiedząc, że W (1) = − 1 i W (− 2) = 2 .

Reszta z dzielenia wielomianu W (x) przez wielomian  3 2 P (x) = x + 2x − x − 2 jest równa x2 + x + 1 . Wyznacz resztę z dzielenia wielomianu W (x ) przez wielomian V(x ) = x2 − 1 .

Liczba -7 jest miejscem zerowym W (x) . Wyznacz resztę z dzielenia tego wielomianu przez wielomian P(x) = x 2 + 5x − 14 , jeśli wiadomo, że w wyniku dzielenia wielomianu W (x ) przez dwumian (x − 2) otrzymujemy resztę 18.

Wykaż, że wielomian  2m m W (x) = (x − 2) + (x − 1) − 1 jest podzielny przez wielomian P(x) = x 2 − 3x + 2 dla każdego m ∈ N + .

Liczba 2 jest miejscem zerowym wielomianu W (x) . Wyznacz resztę z dzielenia tego wielomianu przez wielomian P (x) = x 2 − 3x + 2 jeśli wiadomo, że w wyniku dzielenia wielomianu W (x ) przez dwumian (x − 1) otrzymujemy resztę 5.

Reszta z dzielenia wielomianu W (x) przez dwumian x − 1 jest równa 1, zaś reszta z dzielenia tego wielomianu przez x − 2 jest równa 4. Wyznacz resztę z dzielenia wielomianu W (x) przez wielomian x 2 − 3x + 2 .

*Ukryj

Wyznacz resztę z dzielenia wielomianu P(x) przez trójmian  2 x − 3x − 2 8 jeśli P (7) = 24 i P (− 4) = − 31 .