Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Geometria analityczna

Wyszukiwanie zadań

W układzie współrzędnych na płaszczyźnie zaznaczono punkty A = (2 ,0) i B = (4,0) . Wyznacz wszystkie możliwe położenia punktu C , dla których ABC jest trójkątem równoramiennym o podstawie AB i polu równym 3.

Dwa boki kwadratu zawierają się w prostych o równaniach y = − 3x + 7 i y = − 3x− 6 . Oblicz pole tego kwadratu.

W kartezjańskim układzie współrzędnych (x,y ) przekątne równoległoboku ABCD przecinają się w punkcie S = (9,11) . Bok AB tego równoległoboku zawiera się w prostej o równaniu y = 12x − 1 , a bok AD zawiera się w prostej o równaniu y = 2x − 4 . Oblicz współrzędne wierzchołka B oraz długość odcinka BS .

Znajdź równanie prostej k przechodzącej przez punkt P(2 ,5) , która ogranicza wraz z dodatnimi półosiami układu współrzędnych trójkąt o polu równym 36.

Prosta o równaniu x + 2y = 5 zawiera przekątną BD rombu ABCD , którego bok ma długość 5. Wyznacz współrzędne wierzchołków rombu jeżeli A = (5,1) .

Okrąg o równaniu  2 2 o : x + 2x + y + 2y = 14 jest styczny do prostych k : 4y − 3x − 19 = 0 i l : 4y + 3x + 27 = 0 w punktach K i L odpowiednio. Wyznacz równania wszystkich okręgów, które są jednocześnie styczne do okręgu o , prostych k i l , oraz nie przechodzą przez punkty K i L .

Napisz równanie okręgu opisanego na trójkącie o wierzchołkach A = (− 8,− 5) , B = (8,3) i C = (6,9) .

W prostokącie ABCD dany jest wierzchołek C (3;4) oraz −→ AB = [4;3] . Znajdź równania przekątnych wiedząc, że wierzchołek A należy do prostej x − y = 5 .

Prosta y = t przecina proste y = 2x− 1 i y = 0,5x + 2 odpowiednio w punktach A i B .

  • Wyraź długość odcinka AB jako funkcję zmiennej t .
  • Wyznacz takie punkty A i B , aby długość odcinka AB była równa 3.

Prosta k jest wykresem funkcji  2 f (x) = πx + π .

  • Oblicz współrzędne punktu przecięcia prostej k z wykresem funkcji g(x) = x + π .
  • Znajdź równanie prostej przechodzącej przez punkt K = (− 1,π ) i równoległej do prostej k .

Określ wzajemne położenie okręgów:  2 2 x + y + 2x = 0 i  2 2 x + y + 12x + 24y + 36 = 0 .

Odcinek o końcach A = (2,3) i B = (0,5) jest podstawą trapezu ABCD . Druga podstawa o środku w punkcie S = (− 2,1) jest dwa razy dłuższa od podstawy AB . Wyznacz współrzędne wierzchołków C i D . Oblicz pole tego trapezu.

Na paraboli o równaniu  2 y = x + 6x + 5 znajdź współrzędne punktu A , którego odległość od prostej o równaniu y = 2x − 1 3 jest najmniejsza.

Ukryj Podobne zadania

Na paraboli o równaniu  2 y = x − 4x + 3 wyznacz punkt, którego odległość od prostej y = − 2x − 5 jest najmniejsza.

Dane są parabola o równaniu  2 y = x oraz punkty A = (0,2) i B = (1,3) (zobacz rysunek).


PIC


Rozpatrujemy wszystkie trójkąty ABC , których wierzchołek C leży na tej paraboli. Niech m oznacza pierwszą współrzędną punktu C .

  • Wyznacz pole P trójkąta ABC jako funkcję zmiennej m .
  • Wyznacz wszystkie wartości m , dla których trójkąt ABC jest ostrokątny.
Ukryj Podobne zadania

Dane są parabola o równaniu  1 2 y = 2x oraz punkty A = (− 2,6) i B = (0,4) (zobacz rysunek).


PIC


Rozpatrujemy wszystkie trójkąty ABC , których wierzchołek C leży na tej paraboli. Niech m oznacza pierwszą współrzędną punktu C .

  • Wyznacz pole P trójkąta ABC jako funkcję zmiennej m .
  • Wyznacz wszystkie wartości m , dla których trójkąt ABC jest ostrokątny.

Punkty B = (3,12) , C = (− 14,19 ) i D = (−2 1,12) są kolejnymi wierzchołkami trapezu równoramiennego ABCD , który nie jest równoległobokiem, i w którym AB ∥ CD . Oblicz współrzędne wierzchołka A tego trapezu.

W kwadracie ABCD dane są wierzchołek A = (1,− 2) i środek symetrii S = (2,1) . Oblicz pole kwadratu ABCD .

Dane są punkty A (−1 ,−2 ),B(4,− 2) oraz C(− 1 ,4 ) .

  • Za pomocą odpowiedniego układu nierówności opisz trójkąt ABC .
  • Oblicz odległość punktu A od prostej BC .
  • Oblicz promień koła wpisanego w trójkąt ABC .
  • Wyznacz równanie symetralnej boku BC .

Punkty A = (− 20,12 ) i B = (7,3) są wierzchołkami trójkąta równoramiennego ABC , w którym |AC | = |BC | . Wierzchołek C leży na osi Oy układu współrzędnych. Oblicz współrzędne wierzchołka C oraz obwód tego trójkąta.

Ukryj Podobne zadania

Punkty A = (7,− 15 ) i B = (− 2,12 ) są wierzchołkami trójkąta równoramiennego ABC , w którym |AC | = |BC | . Wierzchołek C leży na prostej y = 5 . Oblicz współrzędne wierzchołka C oraz obwód tego trójkąta.

W kartezjańskim układzie współrzędnych (x,y ) punkty A = (2,8) oraz B = (10,2) są wierzchołkami trójkąta równoramiennego ABP , w którym |AP | = |BP | . Wierzchołek P leży na osi Ox układu współrzędnych. Oblicz współrzędne punktu P oraz długość odcinka AP .

Końce cięciwy AB okręgu o równaniu  2 2 (x + 2) + (y − 4) = 25 leżą na prostej x − 3y + 9 = 0 . Oblicz sinus kąta wypukłego ASB , gdzie S jest środkiem danego okręgu.

Punkty A = (− 7,− 2) i B = (4,− 7) są wierzchołkami podstawy trójkąta równoramiennego ABC , a wysokość opuszczona z wierzchołka A tego trójkąta zawiera się w prostej o równaniu 2x + 19y + 52 = 0 . Oblicz współrzędne wierzchołka C .

Ukryj Podobne zadania

Punkty A = (− 8,6) i B = (3,11) są wierzchołkami podstawy trójkąta równoramiennego ABC , a wysokość opuszczona z wierzchołka A tego trójkąta zawiera się w prostej o równaniu 2x − 19y + 130 = 0 . Oblicz współrzędne wierzchołka C .

Strona 9 z 27
spinner