Podstawą ostrosłupa jest trójkąt , a krawędź jest wysokością ostrosłupa. Oblicz pole powierzchni całkowitej ostrosłupa , jeśli wiadomo, że jego objętość jest równa 48 oraz . Podaj wszystkie możliwe odpowiedzi.
/Szkoła średnia/Geometria/Stereometria/Ostrosłup/Dowolny/Czworościan
Podstawą ostrosłupa jest trójkąt równoramienny . Krawędź jest wysokością ostrosłupa oraz . Oblicz objętość tego ostrosłupa.
W ostrosłupie, którego podstawą jest trójkąt równoboczny o boku , jedna z krawędzi bocznych jest prostopadła do podstawy. Dwie pozostałe krawędzie tworzą z podstawą kąty o mierze . Znajdź pole największej ściany bocznej oraz tangens kąta nachylenia tej ściany do płaszczyzny podstawy.
Podstawą ostrosłupa jest trójkąt równoramienny o ramieniu długości 10 i podstawie długości 12. Wszystkie krawędzie boczne ostrosłupa mają długość 7. Oblicz objętość i pole powierzchni bocznej tego ostrosłupa.
Podstawą ostrosłupa o objętości 30 jest trójkąt równoramienny o ramieniu długości 5 i podstawie długości 6. Oblicz pole powierzchni bocznej ostrosłupa wiedząc, że wszystkie krawędzie boczne mają jednakową długość.
Dany jest ostrosłup, którego podstawą jest trójkąt równoboczny o boku 6. Jedna z krawędzi bocznych tego ostrosłupa ma długość 8 i jest prostopadła do płaszczyzny podstawy. Oblicz objętość tego ostrosłupa.
Podstawą ostrosłupa jest trójkąt . Krawędź jest wysokością ostrosłupa (zobacz rysunek).
Oblicz objętość ostrosłupa , jeśli wiadomo, że oraz pole podstawy jest równe 24.
Podstawą ostrosłupa jest trójkąt, którego jeden bok ma długość 4, a kąty przyległe do tego boku mają miary i . Wysokość ostrosłupa ma długość równą długości promienia koła opisanego na podstawie. Oblicz objętość ostrosłupa. Wynik podaj w postaci , gdzie , , są liczbami wymiernymi.
Podstawą ostrosłupa jest trójkąt, którego jeden z boków ma długość 6, a kąty przyległe do niego mają miary i . Wysokość ostrosłupa ma długość równą długości promienia okręgu opisanego na podstawie. Oblicz objętość ostrosłupa. Wynik podaj w postaci , gdzie , , są liczbami wymiernymi.
Podstawą ostrosłupa jest trójkąt , w którym . Wszystkie ściany boczne tworzą z płaszczyzną podstawy kąt . Oblicz objętość ostrosłupa.
Podstawą ostrosłupa jest trójkąt o bokach długości 18 cm i 12 cm, którego kąt między tymi bokami ma miarę równą . Wszystkie krawędzie boczne ostrosłupa mają długości równe 12 cm. Ostrosłup ten przecięto płaszczyzną równoległą do podstawy i dzielącą jego wysokość w stosunku 1:2, licząc od wierzchołka tego ostrosłupa. Wykonaj rysunek ostrosłupa z zaznaczonym przekrojem i oblicz:
- obwód otrzymanego przekroju,
- objętość tej z brył wyznaczonych przez przekrój, która nie jest podobna do ostrosłupa .
Podstawą ostrosłupa jest trójkąt . Krawędź jest wysokością ostrosłupa (zobacz rysunek).
Oblicz objętość ostrosłupa , jeśli wiadomo, że .
Podstawą ostrosłupa jest trójkąt . Krawędź jest wysokością ostrosłupa (zobacz rysunek).
Oblicz objętość ostrosłupa , jeśli wiadomo, że .
Podstawą ostrosłupa trójkątnego jest trójkąt prostokątny , w którym i (zobacz rysunek). Punkt jest środkiem okręgu opisanego na trójkącie , a odcinek jest wysokością ostrosłupa. Objętość ostrosłupa jest równa 8, a pole ściany jest równe 17. Oblicz długość krawędzi ostrosłupa
Podstawą ostrosłupa jest trójkąt równoramienny , w którym , . Krawędzie boczne mają długości: , . Oblicz objętość tego ostrosłupa.
Podstawą ostrosłupa jest trójkąt równoramienny o podstawie i kącie pomiędzy ramionami. Krawędź jest wysokością ostrosłupa, a kąt nachylenia ściany do podstawy ostrosłupa jest równy . Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa.