Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Podstawą ostrosłupa ABCDS jest kwadrat ABCD (patrz rysunek).


PIC


Krawędź AS jest wysokością tego ostrosłupa. Odległość punktu B od krawędzi CS jest równa d , a kąt dwuścienny między ścianami BCS i CDS ma miarę 2 α , gdzie α ∈ ( π, π-) 4 2 . Oblicz:

  • odległość punktu A od krawędzi CS
  • wysokość tego ostrosłupa.

Podstawą ostrosłupa jest romb, którego przekątne mają długości 12 i 16. Spodek wysokości ostrosłupa pokrywa się z punktem przecięcia przekątnych rombu w podstawie, a pole powierzchni bocznej jest równe 104. Oblicz objętość ostrosłupa.

Podstawą ostrosłupa jest prostokąt, którego stosunek długości boków wynosi 2:3. Pole podstawy ostrosłupa jest równe 24 cm 2 . Każda krawędź boczna jest nachylona do płaszczyzny podstawy pod kątem α = 30 ∘ . Oblicz pole powierzchni bocznej tego ostrosłupa.

*Ukryj

Podstawą ostrosłupa jest prostokąt, którego stosunek długości boków wynosi 4:3. Pole podstawy ostrosłupa jest równe 48. Każda krawędź boczna jest nachylona do płaszczyzny podstawy pod kątem 6 0∘ . Oblicz pole powierzchni bocznej tego ostrosłupa.

Podstawą ostrosłupa ABCDS jest kwadrat ABCD . Krawędź boczna SD jest wysokością ostrosłupa, a jej długość jest dwa razy większa od długości krawędzi podstawy. Oblicz sinus kąta między ścianami bocznymi ABS i CBS tego ostrosłupa.

*Ukryj

Podstawą ostrosłupa ABCDS jest kwadrat ABCD o boku długości a , a krawędź boczna SD jest wysokością ostrosłupa. Oblicz objętość ostrosłupa jeżeli cosinus kąta między ścianami bocznymi ABS i CBS tego ostrosłupa jest równy − 1 5 .

Podstawą ostrosłupa ABCDS jest romb ABCD , w którym  ∘ |∡DAB | = 60 . Krawędź SA jest wysokością ostrosłupa oraz jej długość jest równa długości krawędzi podstawy. Oblicz sinus kąta nachylenia ściany SBC do płaszczyzny podstawy.

Podstawą ostrosłupa jest kwadrat ABCD o boku długości 25. Ściany boczne ABS i BCS mają takie same pola, każde równe 250. Ściany boczne ADS i CDS też mają jednakowe pola, każde równe 187,5. Krawędzie boczne AS i CS mają równe długości. Oblicz objętość tego ostrosłupa.

Podstawą ostrosłupa ABCDS jest prostokąt ABCD , w którym AB = 1 ,  √ -- BC = 2 . Wszystkie krawędzie boczne tego ostrosłupa mają długość 1. Wyznacz wartość dowolnej funkcji trygonometrycznej kąta między dwiema sąsiednimi ścianami bocznymi tego ostrosłupa.

Podstawą ostrosłupa ABCDS jest kwadrat ABCD . Trójkąt równoramienny ASD ma ramię długości 15 i jest prostopadły do podstawy ostrosłupa. Krawędź BS ma długość 17. Oblicz cosinus kąta nachylenia płaszczyzny BCE do płaszczyzny podstawy, gdzie E jest środkiem krawędzi SA .

Podstawą ostrosłupa ABCDS jest prostokąt ABCD o bokach długości a i b . Krawędź AS jest prostopadła do płaszczyzny podstawy. Odległość wierzchołka A od krawędzi SC jest równa d . Wyznacz objętość tego ostrosłupa.

Podstawą ostrosłupa ABCDS jest czworokąt wypukły ABCD , w którym |AB | = 7, |AD | = 5 oraz co s∡DAB = 45 . Każda z krawędzi bocznych ostrosłupa ma długość  √ - 3--6 2 . Oblicz wysokość ostrosłupa.

Podstawą ostrosłupa ABCDS jest romb ABCD o boku długości 4. Kąt ABC rombu ma miarę 120∘ oraz |AS | = |CS | = 10 i |BS | = |DS | . Oblicz sinus kąta nachylenia krawędzi BS do płaszczyzny podstawy ostrosłupa.

Podstawą ostrosłupa prawidłowego czworokątnego ABCDS jest kwadrat ABCD . Pole trójkąta równoramiennego ACS jest równe 120 oraz |AC | : |AS | = 10 : 13 . Oblicz pole powierzchni bocznej tego ostrosłupa.

Podstawą ostrosłupa jest romb o boku długości 18 cm. Każda ze ścian bocznych tworzy z płaszczyzną podstawy kąt 45∘ . Pole powierzchni bocznej ostrosłupa jest równe 43 2 cm 2 . Oblicz jego objętość.

Podstawą ostrosłupa ABCDS jest romb o boku długości 6. Krawędź boczna DS ma długość 8 i jest jednocześnie wysokością tego ostrosłupa. Długości pozostałych trzech krawędzi bocznych są równe (zobacz rysunek).


PIC


Oblicz objętość tego ostrosłupa.

Podstawą ostrosłupa ABCDS jest prostokąt ABCD , a krawędź boczna SA jest jego wysokością. Wykaż, że suma kwadratów pól ścian ABS i BCS jest równa sumie kwadratów pól ścian ADS i DCS .

Podstawą ostrosłupa ABCDS jest prostokąt, którego boki pozostają w stosunku 3:4, a pole jest równe 192 (zobacz rysunek). Punkt E jest wyznaczony przez przecinające się przekątne podstawy, a odcinek SE jest wysokością ostrosłupa. Każda krawędź boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem  ∘ 30 . Oblicz objętość ostrosłupa.


PIC


*Ukryj

Podstawą ostrosłupa ABCDS jest prostokąt o polu równym 432, a stosunek długości boków tego prostokąta jest równy 3:4. Przekątne podstawy ABCD przecinają się w punkcie O . Odcinek SO jest wysokością ostrosłupa (zobacz rysunek). Kąt SAO ma miarę 6 0∘ . Oblicz objętość tego ostrosłupa.


PIC


Podstawą ostrosłupa ABCDS jest prostokąt, którego boki pozostają w stosunku 5:12, a pole jest równe 240 (zobacz rysunek). Punkt E jest wyznaczony przez przecinające się przekątne podstawy, a odcinek SE jest wysokością ostrosłupa. Każda krawędź boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem  ∘ 60 . Oblicz objętość ostrosłupa.


PIC


Podstawą ostrosłupa ABCDS jest prostokąt ABCD , którego boki mają długości |AB | = 32 i |BC | = 1 8 . Ściany boczne ABS i CDS są trójkątami przystającymi i każda z nich jest nachylona do płaszczyzny podstawy ostrosłupa pod kątem α . Ściany boczne BCS i ADS są trójkątami przystającymi i każda z nich jest nachylona do płaszczyzny podstawy pod kątem β . Miary kątów α i β spełniają warunek:  ∘ α + β = 90 . Oblicz tgα oraz pole powierzchni całkowitej tego ostrosłupa.

W graniastosłupie prawidłowym czworokątnym ABCDEF GH przekątna AC podstawy ma długość 4. Kąt BEC jest równy 30∘ . Oblicz objętość ostrosłupa ABCDE przedstawionego na poniższym rysunku.


PIC


Podstawą ostrosłupa ABCDW jest prostokąt ABCD . Krawędź boczna DW jest wysokością tego ostrosłupa. Krawędzie boczne AW ,BW i CW mają następujące długości: |AW | = 6,|BW | = 9,|CW | = 7 . Oblicz objętość tego ostrosłupa.


PIC


*Ukryj

Podstawą ostrosłupa ABCDW jest kwadrat ABCD o polu 2. Krawędź boczna DW jest wysokością tego ostrosłupa. Długości krawędzi bocznych AW i BW spełniają warunek  √ -- 2 |BW | = 6|AW | . Oblicz objętość tego ostrosłupa.


PIC


Podstawą ostrosłupa ABCDW jest kwadrat ABCD . Krawędź boczna DW jest wysokością tego ostrosłupa. Krawędzie boczne AW i BW mają następujące długości:  √ -- |AW | = 6,|BW | = 3 . Oblicz pole powierzchni całkowitej tego ostrosłupa.


PIC


Podstawą ostrosłupa ABCDE jest kwadrat o boku długości 12. Spodek F wysokości EF ostrosłupa jest środkiem krawędzi AD . Wiedząc, że dwie krótsze krawędzie boczne mają tę samą długość, równą 10, oblicz tangens kąta nachylenia krawędzi EC do płaszczyzny podstawy.


PIC


Strona 1 z 2>