Podstawą ostrosłupa jest kwadrat o boku długości 12. Spodek wysokości ostrosłupa jest środkiem krawędzi . Wiedząc, że dwie krótsze krawędzie boczne mają tę samą długość, równą 10, oblicz tangens kąta nachylenia krawędzi do płaszczyzny podstawy.
Podstawą ostrosłupa jest kwadrat o boku długości 12. Spodek wysokości ostrosłupa jest środkiem krawędzi . Wiedząc, że dwie krótsze krawędzie boczne mają tę samą długość, równą 10, oblicz tangens kąta nachylenia krawędzi do płaszczyzny podstawy.
Podstawą ostrosłupa jest prostokąt , w którym , . Wszystkie krawędzie boczne tego ostrosłupa mają długość 1. Wyznacz cosinus kąta między dwiema sąsiednimi ścianami bocznymi tego ostrosłupa.
Podstawą ostrosłupa jest romb, którego pole wynosi , a kąt ostry rombu ma miarę . Wysokość ostrosłupa jest równa 24 cm, a spodek tej wysokości jest środkiem okręgu wpisanego w podstawę. Oblicz:
Podstawą ostrosłupa jest czworokąt . Przekątna tego czworokąta ma długość , a kąt ma miarę . Każda krawędź boczna tego ostrosłupa ma tę samą długość 26. Oblicz odległość środka wysokości tego ostrosłupa od krawędzi .
Podstawą ostrosłupa jest czworokąt . Przekątna tego czworokąta ma długość , a kąt ma miarę . Każda krawędź boczna tego ostrosłupa ma tę samą długość 13. Oblicz sumę odległości spodka wysokości ostrosłupa od krawędzi bocznych , , i .
Podstawą ostrosłupa jest równoległobok o przekątnej długości i bokach długości 32 i 34. Pole powierzchni bocznej jednej ze ścian bocznych ostrosłupa jest mniejsze od pola powierzchni sąsiedniej ściany bocznej i jest równe 1808. Spodek wysokości ostrosłupa pokrywa się z punktem przecięcia przekątnych równoległoboku , a jego ściany boczne są trójkątami ostrokątnymi. Oblicz długość krótszej z krawędzi bocznych ostrosłupa .
Podstawą ostrosłupa jest romb . Krawędź jest prostopadła do płaszczyzny podstawy, krawędź ma długość 4 i jest nachylona do płaszczyzny podstawy pod kątem . Krawędź ma długość . Oblicz objętość tego ostrosłupa.
Podstawą ostrosłupa jest prostokąt o polu kwadratowych. Stosunek długości boków tego prostokąta wynosi 2:3. Krawędzie boczne ostrosłupa są nachylone do płaszczyzny podstawy pod kątem . Oblicz pole powierzchni całkowitej tej bryły.
Podstawą ostrosłupa jest kwadrat . Punkt jest środkiem krawędzi , odcinek jest wysokością ostrosłupa. Oblicz objętość ostrosłupa, jeśli wiadomo, że .
Podstawą ostrosłupa jest trapez . Przekątna tego trapezu ma długość , jest prostopadła do ramienia i tworzy z dłuższą podstawą tego trapezu kąt o mierze . Każda krawędź boczna tego ostrosłupa ma tę samą długość . Oblicz odległość spodka wysokości tego ostrosłupa od jego krawędzi bocznej .
Podstawą ostrosłupa jest trapez . Przekątna tego trapezu ma długość , jest prostopadła do ramienia i tworzy z dłuższą podstawą tego trapezu kąt o mierze . Każda krawędź boczna tego ostrosłupa ma tę samą długość 9. Oblicz odległość spodka wysokości tego ostrosłupa od jego krawędzi bocznej .
Podstawą ostrosłupa jest prostokąt . Spodkiem wysokości ostrosłupa jest środek krawędzi . Oblicz tangens kąta między ścianami bocznymi i tego ostrosłupa jeżeli i .
Podstawą ostrosłupa jest trapez równoramienny , którego ramiona mają długość i tworzą z podstawą kąt ostry o mierze . Każda ściana boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod tym samym kątem takim, że . Oblicz odległość spodka wysokości tego ostrosłupa od jego ściany bocznej .
Podstawą ostrosłupa czworokątnego jest trapez (). Ramiona tego trapezu mają długości i , a miara kąta jest równa . Każda ściana boczna tego ostrosłupa tworzy z płaszczyzną podstawy kąt , taki, że . Oblicz objętość tego ostrosłupa.
Podstawą ostrosłupa jest prostokąt o bokach długości i . Krawędź jest prostopadła do podstawy. Najdłuższa krawędź boczna tworzy z podstawą kąt . Wykonaj rysunek pomocniczy tego ostrosłupa oraz oblicz jego objętość.
Podstawą ostrosłupa jest romb. Wysokość ostrosłupa ma długość , a spodek tej wysokości jest punktem przecięcia przekątnych. Każda ze ścian bocznych ostrosłupa tworzy z płaszczyzną podstawy kąt o mierze .
Podstawą ostrosłupa jest kwadrat o boku długości 40. Pola ścian bocznych , , i są odpowiednio równe: 740, , 260 i 400. Oblicz objętość tego ostrosłupa.
Podstawą ostrosłupa jest kwadrat o boku długości 4. Odcinek jest wysokością ostrosłupa i ma długość 6. Punkt jest środkiem odcinka . Oblicz pole przekroju ostrosłupa płaszczyzną .
Podstawą ostrosłupa jest trapez prostokątny, w którym jedna z podstaw ma długość 7, a jedna z przekątnych ma długość . Krawędź jest wysokością ostrosłupa oraz . Oblicz objętość tego ostrosłupa.
Podstawą ostrosłupa jest prostokąt o bokach 6 cm i 8 cm. Każda krawędź boczna jest nachylona do płaszczyzny podstawy pod katem . Oblicz pole powierzchni ostrosłupa.
Podstawą ostrosłupa jest kwadrat . Trójkąt równoramienny ma ramię długości 15 i jest prostopadły do podstawy ostrosłupa. Krawędź ma długość 17. Oblicz pole przekroju ostrosłupa płaszczyzną , gdzie jest środkiem krawędzi .
W graniastosłupie prawidłowym czworokątnym przekątna podstawy ma długość 4. Kąt jest równy . Oblicz objętość ostrosłupa przedstawionego na poniższym rysunku.