Rozpatrujemy wszystkie trapezy równoramienne, w które można wpisać okrąg, spełniające warunek: suma długości dłuższej podstawy i wysokości trapezu jest równa 2.
- Wyznacz wszystkie wartości , dla których istnieje trapez o podanych własnościach.
- Wykaż, że obwód takiego trapezu, jako funkcja długości dłuższej podstawy trapezu, wyraża się wzorem
- Oblicz tangens kąta ostrego tego spośród rozpatrywanych trapezów, którego obwód jest najmniejszy.