Kąt jest ostry i spełniona jest równość . Oblicz wartość wyrażenia .
/Szkoła średnia
Punkty i leżą na okręgu o równaniu . Wyznacz na tym okręgu taki punkt , aby trójkąt był trójkątem równoramiennym o podstawie .
Punkty są kolejnymi wierzchołkami równoległoboku . Oblicz pole tego równoległoboku.
Rozwiąż nierówność .
Ile punktów wspólnych ma prosta z okręgiem jeśli oraz .
Kąt rozwarcia stożka ma miarę , a tworząca tego stożka ma długość 6. Promień podstawy stożka jest równy
A) 3 B) 6 C) D)
W kartezjańskim układzie współrzędnych prosta o równaniu przechodzi przez punkty oraz . Współczynnik w równaniu tej prostej jest równy
A) B) C) 2 D)
Prosta ma równanie . Wskaż równanie prostej prostopadłej do prostej .
A) B) C) D)
Rozwiąż nierówność .
Oblicz, ile jest liczb naturalnych pięciocyfrowych, w zapisie których nie występuje zero, jest dokładnie jedna cyfra 7 i dokładnie jedna cyfra parzysta.
Boki równoległoboku mają długości 6 i 10, a kąt rozwarty między tymi bokami ma miarę . Pole tego równoległoboku jest równe
A) B) 30 C) D) 60
W kartezjańskim układzie współrzędnych prosta o równaniu przecina parabolę o równaniu w punktach oraz , które są kolejnymi wierzchołkami równoległoboku . Wierzchołek ma pierwszą współrzędną ujemną. Wierzchołek leży na prostej o równaniu i ma pierwszą współrzędną dodatnią. Odległość punktu od prostej zawierającej bok równoległoboku jest równa . Oblicz długość boku tego równoległoboku.
Wysokość ściany bocznej ostrosłupa prawidłowego sześciokątnego jest 2 razy dłuższa od krawędzi jego podstawy. Stosunek pola powierzchni bocznej tego ostrosłupa do pola jego podstawy jest równy
A) B) C) 1 D)
Zbiorem wartości funkcji kwadratowej jest przedział . Na którym rysunku przedstawiono wykres funkcji ?
W kartezjańskim układzie współrzędnych narysowano wykres funkcji (zobacz rysunek).
Dziedziną funkcji jest zbiór
A) B) C)
D) E) F)
Punkty i są dwoma sąsiednimi wierzchołkami kwadratu . Pole tego kwadratu jest równe
A) 74 B) 58 C) 40 D) 29
Dany jest sześcian o krawędzi długości 2. Punkt jest środkiem krawędzi . Płaszczyzna przecina krawędź w punkcie (zobacz rysunek). Oblicz pole przekroju tego sześcianu płaszczyzną przechodzącą przez punkty i .
Wyrażenie jest równe
A) B) C) D)
W kartezjańskim układzie współrzędnych punkty oraz są przeciwległymi wierzchołkami kwadratu . Pole kwadratu jest równe
A) B) C) 40 D) 80
Na okręgu o równaniu leży punkt
A) B) C) D)