Trójkąt przedstawiony na poniższym rysunku jest równoboczny, a punkty są współliniowe. Na boku wybrano punkt tak, że . Wykaż, że .
Trójkąt przedstawiony na poniższym rysunku jest równoboczny, a punkty są współliniowe. Na boku wybrano punkt tak, że . Wykaż, że .
Wykaż, że wielomian jest podzielny przez wielomian dla każdego .
Liczba punktów wspólnych wykresu funkcji wymiernej z osią jest równa
A) 3 B) 2 C) 1 D) 0
Liczba punktów wspólnych wykresu funkcji wymiernej z osią jest równa
A) 3 B) 2 C) 1 D) 0
Dany jest trójkąt , w którym . Na bokach i tego trójkąta obrano odpowiednio takie punkty i , że i przecinają się w punkcie (zobacz rysunek). Wykaż, że jeżeli , to .
W pewnej grupie 100 uczniów przeprowadzono sondaż dotyczący dziennego czasu korzystania z komputera. Wyniki sondażu przedstawia poniższy diagram. Na osi poziomej podano – wyrażony w godzinach – dzienny czas korzystania przez ucznia z komputera. Na osi pionowej przedstawiono liczbę uczniów, którzy dziennie korzystają z komputera przez określony czas.
Dominanta dziennego czasu korzystania przez ucznia z komputera jest równa
A) 2,25 godziny B) 2,50 godziny C) 2,75 godziny D) 1,50 godziny
W pewnej grupie 100 uczniów przeprowadzono sondaż dotyczący dziennego czasu korzystania z komputera. Wyniki sondażu przedstawia poniższy diagram. Na osi poziomej podano – wyrażony w godzinach – dzienny czas korzystania przez ucznia z komputera. Na osi pionowej przedstawiono liczbę uczniów, którzy dziennie korzystają z komputera przez określony czas.
Dominanta dziennego czasu korzystania przez ucznia z komputera jest równa
A) 2,25 godziny B) 2,50 godziny C) 1,5 godziny D) 2 godziny
Jeżeli i to
A) B) C) D)
Jeżeli i to
A) B) C) D)
Cena długopisu po 3 podwyżkach o 50% i dwóch obniżkach o 20% wzrosła o 2,32 zł. Nowa cena długopisu jest równa
A) 3,42 zł B) 2 zł C) 4,32 zł D) 2,34 zł
Cena długopisu po 2 podwyżkach o 20% i trzech obniżkach o 50% zmalała o 2,87 zł. Nowa cena długopisu jest równa
A) 1,26 zł B) 0,63 zł C) 3,50 zł D) 6,37 zł
Cena telewizora po 3 podwyżkach o 25% i dwóch obniżkach o 20% wzrosła o 1200 zł. Nowa cena telewizora jest równa
A) 4800 zł B) 5760 zł C) 6000 zł D) 4500 zł
Czwarty wyraz ciągu arytmetycznego jest równy 6. Oblicz sumę siedmiu początkowych wyrazów tego ciągu.
Dany jest nieskończony ciąg geometryczny określony dla , w którym . Suma wszystkich wyrazów tego ciągu jest skończona i spełnia nierówność . Wyznacz iloraz tego ciągu.
Na rysunku przedstawiony jest fragment wykresu funkcji liniowej . Na wykresie tej funkcji leżą punkty i .
Obrazem prostej przy obrocie o kąt wokół punktu jest wykres funkcji określonej wzorem
A) B) C) D)
W graniastosłupie prawidłowym czworokątnym przekątna podstawy ma długość 4. Kąt jest równy . Oblicz objętość ostrosłupa przedstawionego na poniższym rysunku.
Jeśli liczbę powiększymy o 3, to otrzymamy tej liczby. Wynika stąd, że
A) B) C) D)
Jeśli liczbę powiększymy o 5, to otrzymamy tej liczby. Wynika stąd, że
A) B) C) D)
Jeśli liczbę powiększymy o 4, to otrzymamy tej liczby. Wynika stąd, że
A) B) C) D)
Na rysunku przedstawiono okrąg wpisany w trójkąt.
Miara kąta jest równa
A) B) C) D)
Okrąg o środku w punkcie jest wpisany w trójkąt . Wiadomo, że i (zobacz rysunek).
Miara kąta jest równa
A) B) C) D)
Okrąg o środku w punkcie jest wpisany w trójkąt . Wiadomo, że i (zobacz rysunek).
Miara kąta jest równa
A) B) C) D)
Odległość między środkami okręgów o równaniach oraz jest równa
A) B) C) D)
Liczba jest równa
A) B) C) D)
Liczba jest równa
A) B) C) D)
Liczba jest równa
A) B) C) D)
Liczba jest równa
A) B) C) D)
Liczba jest równa
A) 1 B) C) 2 D)
Liczba jest równa
A) 1 B) 2 C) D)
Liczba jest równa
A) 1 B) C) D)
Dany jest okrąg o promieniu 11 oraz punkt oddalony o 7 od środka okręgu. Przez punkt poprowadzono cięciwę o długości 18. W jakim stosunku punkt podzielił tę cięciwę na dwa odcinki?
Liczb naturalnych siedmiocyfrowych, w zapisie których występuje dokładnie raz cyfra 7, dokładnie dwa razy cyfra 4, nie występuje cyfra zero, a pozostałe cyfry są między sobą różne jest
A) B) C) D)
Przyprostokątne trójkąta prostokątnego mają długości 12 i 6. Oblicz długość promienia okręgu stycznego do obu przyprostokątnych, którego środek leży na przeciwprostokątnej, oraz oblicz odległości środka od wierzchołków trójkąta .
Ze zbioru losujemy kolejno bez zwracania 2 liczby i . Dla jakich wartości prawdopodobieństwo tego, że jest większe od ?