Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe/Funkcje - wykresy/Wykładniczy/Różne

Wyszukiwanie zadań

Dane są dwie funkcje określone dla wszystkich liczb rzeczywistych x wzorami f (x) = − 5x + 1 oraz g(x) = 5x . Liczba punktów wspólnych wykresów tych funkcji jest równa
A) 3 B) 2 C) 1 D) 0

Ukryj Podobne zadania

Dane są dwie funkcje określone dla wszystkich liczb rzeczywistych x wzorami f (x) = 13x − 1 oraz g(x ) = 3x . Liczba punktów wspólnych wykresów tych funkcji jest równa
A) 3 B) 2 C) 1 D) 0

Dane są dwie funkcje określone dla wszystkich liczb rzeczywistych x wzorami  ( )x f (x) = 1 5 oraz g(x) = 5x . Liczba punktów wspólnych wykresów tych funkcji jest równa
A) 0 B) 1 C) 2 D) 3

Wykres funkcji  x y = − 3 znajduje się w ćwiartkach
A) I i II B) II i III C) III i IV D) IV i I

Na rysunku przedstawiono fragment wykresu funkcji wykładniczej f określonej wzorem f(x ) = ax . Punkt A = (1,2) należy do tego wykresu funkcji.


PIC


Podstawa a potęgi jest równa
A) − 12 B) 12 C) − 2 D) 2

Ukryj Podobne zadania

Na rysunku przedstawiono fragment wykresu funkcji wykładniczej f określonej wzorem f(x ) = ax . Punkt A = (− 1,2) należy do tego wykresu funkcji.


PIC


Podstawa a potęgi jest równa
A) − 12 B) 12 C) − 2 D) 2

Funkcja f określona jest wzorem  x f(x ) = 2 . Funkcja g(x) = f (x)+ 2 z prostą y = 2
A) ma jeden punkt wspólny B) dwa punkty wspólne
C) nie ma punktów wspólnych D) ma nieskończenie wiele punktów wspólnych

Ukryj Podobne zadania

Funkcja f określona jest wzorem  x f(x ) = 2 . Wykres funkcji g(x) = f(x) − 2 z prostą y = 2
A) ma jeden punkt wspólny B) dwa punkty wspólne
C) nie ma punktów wspólnych D) ma nieskończenie wiele punktów wspólnych

Na rysunku przedstawiono fragment wykresu funkcji wykładniczej f określonej wzorem f(x ) = ax . Wartość funkcji dla x = 5 jest cztery razy większa, niż wartość dla x = 1 .


PIC


Podstawa a potęgi jest równa
A) 2 B) √ -- 42 C)  √ -- − 2 D) √ 2-

Która z podanych prostych nie przecina wykresu funkcji  1- y = 3− 2x ?
A) x = −1 0 B) x = 5 C) y = 3 D) y = − 5

Na rysunku przedstawiono wykres funkcji określonej wzorem


PIC


A) f(x ) = 2x − 3 B) 2x− 3 C) ( 1)x 2 − 3 D) ( 1)x −3 2

Dana jest funkcja wykładnicza  −x f(x) = 1 + 2 określona dla x ∈ R . Zbiorem wartości funkcji f jest przedział

A) (1,+ ∞ ) ,B) (− ∞ ,1) ,

ponieważ wykres funkcji y = f (x) można otrzymać z wykresu funkcji y = 2x poprzez

1) symetrię względem osi Ox i przesunięcie o 1 jednostkę w dół.
2) symetrię względem osi Oy i przesunięcie o 1 jednostkę w górę.
3) symetrię względem osi Ox i przesunięcie o 1 jednostkę w górę.

Dane są funkcje  5x f(x) = (√-5)x oraz  (√5− 1)x g (x) = ---2x-- , określone dla wszystkich liczb rzeczywistych x . Punkt wspólny wykresów funkcji f i g
A) nie istnieje B) ma współrzędne (0,1)
C) ma współrzędne (1,0) D) ma współrzędne  √ -- ( 5,5)

Dana jest funkcja f określona wzorem  −x f(x) = 3 . Wykres funkcji g jest symetryczny do wykresu funkcji f względem osi Ox . Zatem
A) g(x ) = − 3−x B) g (x) = − 3x C) g(x ) = 3x D) g(x) = 3−x − 2

Ukryj Podobne zadania

Dana jest funkcja f określona wzorem  −x f(x) = 2 . Wykres funkcji g jest symetryczny do wykresu funkcji f względem osi Ox . Zatem
A) g(x ) = 2−x B) g (x) = − 2−x C) g(x ) = 2x D) g(x) = 2−x − 2

Dana jest funkcja f określona wzorem  −x f(x) = 3 . Wykres funkcji g jest symetryczny do wykresu funkcji f względem osi Oy . Zatem
A) g(x ) = − 3−x B) g (x) = − 3x C) g(x ) = 3x D) g(x) = 3−x − 2

Dane są funkcje  x f(x) = 3 oraz g (x) = f(−x ) , określone dla wszystkich liczb rzeczywistych x . Punkt wspólny wykresów funkcji f i g
A) nie istnieje B) ma współrzędne (1,0)
C) ma współrzędne (0,1) D) ma współrzędne (0,0)

Ukryj Podobne zadania

Dane są funkcje  x f(x) = 2 oraz g (x) = −f (x) + 4 , określone dla wszystkich liczb rzeczywistych x . Punkt wspólny wykresów funkcji f i g
A) nie istnieje B) ma współrzędne (1,0)
C) ma współrzędne (0,1) D) ma współrzędne (1,2)

Funkcja f jest określona dla wszystkich liczb rzeczywistych wzorem f (x) = 3x−2 + 3 . Prosta l ma równanie y = 3,3 . Ile punktów wspólnych mają wykres funkcji f i prosta l ?
A) Zero. B) Jeden. C) Dwa. D) Nieskończenie wiele.

Ukryj Podobne zadania

Funkcja f jest określona dla wszystkich liczb rzeczywistych wzorem f (x) = 2x+3 − 2 . Prosta l ma równanie y = − 2,1 . Ile punktów wspólnych mają wykres funkcji f i prosta l ?
A) Zero. B) Jeden. C) Dwa. D) Nieskończenie wiele.

Wykres funkcji  x−3 f(x ) = 2 przedstawiony jest na rysunku:


PIC


Ukryj Podobne zadania

Wykres funkcji  ( )x −3 f(x ) = 12 przedstawiony jest na rysunku:


PIC


Wykres funkcji  −x f(x ) = 3⋅3 przedstawiony jest na rysunku:


PIC


Wykres funkcji  ( )x −3 f(x ) = 12 przedstawiony jest na rysunku


PIC


spinner