W trójkącie poprowadzono odcinki i w ten sposób, że punkty i są środkami odpowiednio odcinków i . Wykaż, że pole trójkąta jest siedem razy mniejsze od pola trójkąta .
W trójkącie poprowadzono odcinki i w ten sposób, że punkty i są środkami odpowiednio odcinków i . Wykaż, że pole trójkąta jest siedem razy mniejsze od pola trójkąta .
Na bokach trójkąta zbudowano kwadraty , i (zobacz rysunek).
Kąty i są ostre oraz suma ich tangensów jest równa . Wykaż, że jeżeli pole kwadratu jest pięć razy większe od pola trójkąta , to suma pól kwadratów i też jest pięć razy większa od pola trójkąta .
W trójkącie bok ma długość , oraz . Wykaż, że pole trójkąta jest równe
Wykaż, że pole trójkąta o bokach i promieniu okręgu opisanego na nim jest równe .
Wykaż, że pole trójkąta jest równe , gdzie jest promieniem okręgu opisanego na tym trójkącie, a i są miarami kątów wewnętrznych tego trójkąta.
Na bokach i trójkąta obrano punkty i takie, że oraz . Odcinki i przecinają się w punkcie . Wykaż, że pole czworokąta jest równe polu trójkąta .
Uzasadnij wzór na pole trójkąta , gdzie i są miarami kątów trójkąta przyległych do boku, na który opuszczono wysokość .
Punkty i oraz i dzielą odpowiednio boki i trójkąta w stosunku (zobacz rysunek). Odcinki i przecinają się w punkcie .
Uzasadnij, że pola trójkątów i są równe.
Punkty i dzielą bok trójkąta na trzy równe części (zobacz rysunek). Wykaż, że pole trójkąta jest trzy razy mniejsze od pola trójkąta .
Dany jest trójkąt . Na boku tego trójkąta obrano punkty i tak, że . Na bokach i obrano – odpowiednio – punkty i tak, że oraz (zobacz rysunek). Wykaż, że jeżeli pole trójkąta jest równe , to pole trójkąta jest równe .
Dany jest trójkąt . Na boku tego trójkąta obrano punkty i tak, że . Na bokach i obrano – odpowiednio – punkty i tak, że oraz (zobacz rysunek). Wykaż, że jeżeli pole trójkąta jest równe , to pole trójkąta jest równe .
Punkty i są środkami boków i trójkąta . Odcinki i przecinają się w punkcie .
Uzasadnij, że pola trójkątów i są równe.