Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria

Wyszukiwanie zadań

Długość promienia walca zmniejszono dziesięciokrotnie. Ile razy trzeba zwiększyć wysokość tego walca aby objętość się nie zmieniła?

Powierzchnia boczna stożka po rozwinięciu na płaszczyznę jest wycinkiem koła o promieniu 3 i kącie środkowym 120∘ (zobacz rysunek). Oblicz objętość tego stożka.


ZINFO-FIGURE


Rozważamy wszystkie graniastosłupy prawidłowe czworokątne ABCDEF GH , w których odcinek łączący punkt O przecięcia przekątnych AC i BD podstawy ABCD z dowolnym wierzchołkiem podstawy EF GH ma długość d (zobacz rysunek).


ZINFO-FIGURE


  • Wyznacz zależność objętości V graniastosłupa od jego wysokości h i podaj dziedzinę funkcji V (h) .

  • Wyznacz wysokość tego z rozważanych graniastosłupów, którego objętość jest największa.

Ukryj Podobne zadania

Rozważamy wszystkie graniastosłupy prawidłowe czworokątne ABCDEF GH , w których odcinek łączący punkt O przecięcia przekątnych AC i BD podstawy ABCD z dowolnym wierzchołkiem podstawy EF GH ma długość 3 (zobacz rysunek).


ZINFO-FIGURE


Wyznacz wymiary tego z rozważanych graniastosłupów, którego objętość jest największa. Oblicz tę największą objętość.

Bryła przedstawiona na poniższym rysunku powstała przez wycięcie z graniastosłupa prostego trójkątnego innego graniastosłupa prostego. Oblicz pole powierzchni i objętość tej bryły.


PIC


Ukryj Podobne zadania

Bryła przedstawiona na poniższym rysunku powstała przez wycięcie z graniastosłupa prostego trójkątnego innego graniastosłupa prostego. Oblicz pole powierzchni i objętość tej bryły.


PIC


Dwie kule mające średnice 4 cm i 1 cm wpisano w stożek w ten sposób, że większa jest styczna do podstawy i powierzchni bocznej stożka, zaś mniejsza – do powierzchni bocznej stożka i do większej kuli. Oblicz pole powierzchni tego stożka.

Objętość stożka jest równa 1000π , a tworząca jest nachylona do podstawy pod kątem 30∘ . Oblicz pole powierzchni bocznej tego stożka.

Ukryj Podobne zadania

Objętość stożka jest równa 3000π , a tworząca jest nachylona do podstawy pod kątem 60∘ . Oblicz pole powierzchni bocznej tego stożka.

Krawędź sześcianu jest o 4 krótsza od jego przekątnej. Oblicz pole powierzchni całkowitej tego sześcianu.

Pole powierzchni całkowitej stożka jest trzy razy większe od pola jego podstawy. Oblicz stosunek objętości stożka do objętości wpisanej w niego kuli.

Ukryj Podobne zadania

Pole podstawy stożka jest trzy razy mniejsze od jego pola powierzchni całkowitej. Oblicz stosunek objętości kuli wpisanej w stożek do objętości stożka.

Czworościan foremny przecięto płaszczyzną π styczną do kuli wpisanej w ten czworościan (tzn. kuli stycznej do wszystkich ścian czworościanu) oraz równoległą do jednej ze ścian czworościanu. Oblicz stosunek objętości brył, na które płaszczyzna π podzieliła czworościan.

W ostrosłupie prawidłowym czworokątnym krawędź podstawy ma długość a . Kąt między krawędzią boczną, a krawędzią podstawy ma miarę α > 4 5∘ (zobacz rysunek). Oblicz objętość tego ostrosłupa.


PIC


Oblicz objętość ostrosłupa trójkątnego ABCS , którego siatkę przedstawiono na rysunku.


PIC


W ostrosłupie prawidłowym czworokątnym krawędź boczna ma długość 4 cm i jest nachylona do płaszczyzny podstawy pod kątem α . Oblicz objętość ostrosłupa.

Podstawą ostrosłupa jest trójkąt o danych kątach α i β . Wszystkie krawędzie boczne mają długość d i są nachylone do płaszczyzny podstawy pod kątem o mierze δ . Oblicz objętość tego ostrosłupa.

Rozwinięcie powierzchni bocznej stożka jest wycinkiem kołowym o kącie środkowym α . Kąt ten oparty jest na cięciwie o długości a . Oblicz objętość stożka.

Tworząca stożka ma długość 3 dm. Długość promienia podstawy stożka jest równa 1 dm. Powierzchnia boczna stożka po rozwinięciu na płaszczyznę jest wycinkiem koła. Oblicz miarę α kąta środkowego tego wycinka.


PIC


Trapez równoramienny o podstawach długości 14 cm i 26 cm oraz o wysokości 6 cm obraca się wokół swojej osi symetrii. Oblicz objętość otrzymanej bryły.

Firma logistyczna planuje produkcję pojemników w kształcie graniastosłupa prostego o objętości 3 m 3 i podstawie będącej prostokątem, w którym jeden z boków jest 4 razy dłuższy od drugiego. Koszt materiału potrzebnego do produkcji ścian bocznych tego pojemnika wynosi 40 zł za m 2 , a koszt materiału potrzebnego do produkcji jego górnej i dolnej podstawy wynosi 60 zł za  2 m . Oblicz jakie powinny być wymiary tego pojemnika, aby koszt jego produkcji był najmniejszy możliwy.

Tworząca stożka ma długość 17, a wysokość stożka jest krótsza od średnicy jego podstawy o 22. Oblicz pole powierzchni całkowitej i objętość tego stożka.

Ukryj Podobne zadania

Tworząca stożka ma długość 25, a średnica podstawy stożka jest krótsza od wysokości stożka o 10. Oblicz pole powierzchni całkowitej i objętość tego stożka.

Pole powierzchni bocznej ostrosłupa prawidłowego trójkątnego jest równe  √ -- 14 7 3 cm 2 , a pole jego powierzchni całkowitej wynosi  √ -- 1 96 3 cm 2 . Oblicz długość krawędzi podstawy i długość krawędzi bocznej tego ostrosłupa.

Wysokość ostrosłupa prawidłowego czworokątnego jest równa 8. Krawędź boczna jest nachylona do płaszczyzny podstawy pod kątem α takim, że cosα = 35 . Oblicz objętość tego ostrosłupa.

Strona 12 z 28
spinner