Okrąg wpisany w trójkąt prostokątny o bokach długości jest styczny do boków i w punktach i . Proste i przecinają się punkcie . Oblicz pole trójkąta .
/Konkursy/Zadania/Geometria
Trójkąty równoboczne i są położone tak, jak na poniższym rysunku. Wykaż, że .
Na ramionach i trójkąta równoramiennego wybrano punkty i w ten sposób, że odcinek jest równoległy do podstawy i styczny do okręgu wpisanego w trójkąt . Wykaż, że pole trójkąta jest równe
Każdy kąt trójkąta ma miarę mniejszą od . Wyznacz taki punkt wewnątrz trójkąta , dla którego suma jest najmniejsza możliwa.
Na okręgu o promieniu opisano trapez, w którym i .
Wykaż, że .
W trapezie połączono środek ramienia trapezu z końcami drugiego ramienia . Wykaż, że pole powstałego trójkąta jest równe połowie pola trapezu .
Punkt jest środkiem boku . Udowodnij, że pole trójkąta jest połową pola trapezu ().
Z punktu należącego do boku trójkąta równobocznego poprowadzono półprostą dzielącą trójkąt na dwie figury o równych polach. Oblicz tangens kąta jaki tworzy ta półprosta z odcinkiem , jeśli i .
Dane są dwa półokręgi o wspólnym środku i średnicach odpowiednio i (punkty i są współliniowe).
Punkt leży na wewnętrznym półokręgu, punkt leży na zewnętrznym półokręgu, punkty i są współliniowe. Udowodnij, że .
Na przyprostokątnych i trójkąta prostokątnego zbudowano, na zewnątrz trójkąta, kwadraty i . Odcinek przecina przyprostokątną w punkcie , a odcinek przecina przyprostokątną w punkcie (zobacz rysunek). Udowodnij, że .
W trójkącie równoramiennym , w którym wysokość jest dwa razy dłuższa od wysokości (patrz rysunek). Oblicz kosinusy wszystkich kątów wewnętrznych trójkąta .
W trójkącie równobocznym o wysokości obrano punkt , z którego poprowadzono odcinki prostopadłe do boków tego trójkąta. Wykaż, że suma długości tych odcinków jest równa .
Trójkąt jest podstawą ostrosłupa . Punkt jest środkiem boku i . Odcinek jest wysokością tego ostrosłupa. Wykaż, że kąt jest prosty.
Wykaż, że trójkąt, którego długości boków są trzema kolejnymi wyrazami ciągu geometrycznego, miary kątów zaś trzema kolejnymi wyrazami ciągu arytmetycznego jest trójkątem równobocznym.
Na przyprostokątnych i trójkąta prostokątnego równoramiennego zaznaczono odpowiednio punkty i tak, że . Odcinki i przecinają się w punkcie . Oblicz .
Wykaż, że jeżeli długości boków trójkąta spełniają równość
to promień okręgu opisanego na tym trójkącie jest równy .
Wewnątrz trójąta obrano punkt odległy od prostych i odpowiednio o . Wykaż że
gdzie jest polem trójkąta, a promieniem okręgu opisanego. Dla jakich punktów zachodzi równość?
Odcinki i są równoległe do boku trójkąta , a odcinki i są równoległe do boku . Uzasadnij, że jeżeli , to .
Trzy okręgi o promieniach 2, 4 i 6 są parami zewnętrznie styczne. Oblicz długość promienia okręgu zawierającego punkty styczności tych okręgów.
Podstawy trapezu mają długości i (). Suma miar kątów wewnętrznych przy dłuższej podstawie wynosi . Oblicz długość odcinka łączącego środki podstaw trapezu.
Podstawy trapezu mają długości i . Na ramionach trapezu wybrano punkty i w ten sposób, że odcinek jest równoległy do podstaw oraz . Oblicz długość odcinka .