Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Pole powierzchni bocznej stożka jest czterokrotnie większe od pola podstawy stożka. Oblicz wysokość stożka, wiedząc, że promień jego podstawy jest równy r .

W stożku o promieniu podstawy r tworząca jest nachylona do płaszczyzny podstawy pod kątem α . Przez wierzchołek stożka poprowadzono płaszczyznę, która jest nachylona do płaszczyzny podstawy pod kątem β > α .


PIC


Wykaż, że pole otrzymanego przekroju stożka jest równe

 2 ∘ ---------------------- r-tg-α--sin(β-+-α-)sin(β-−-α)-. cos αsin2 β

Powierzchnia boczna stożka jest wycinkiem kołowym, którego kąt środkowy ma miarę 15 0∘ . Wiedząc, że tworząca stożka ma długość 24 cm, oblicz pole powierzchni bocznej i objętość tego stożka.

*Ukryj

Powierzchnia boczna stożka jest wycinkiem kołowym, którego kąt środkowy ma miarę 12 0∘ . Wiedząc, że tworząca stożka ma długość 12 cm, oblicz pole powierzchni bocznej i objętość tego stożka.

Metalową kulę o promieniu R = 3 cm przetopiono na stożek. Tworząca stożka jest nachylona do płaszczyzny podstawy pod kątem α , takim, że  √ - sinα = --5 5 . Wyznacz promień podstawy tego stożka.

Stożek ma wysokość 10 cm. Pole przekroju osiowego tego stożka jest równe 30 cm 2 . Jaką długość ma tworząca tego stożka?

Powierzchnia boczna stożka jest po rozwinięciu ćwiartką koła o promieniu 16 cm. Oblicz pole powierzchni całkowitej i objętość tego stożka.

*Ukryj

Powierzchnia boczna stożka jest po rozwinięciu ćwiartką koła o promieniu 12 cm. Oblicz pole powierzchni całkowitej i objętość tego stożka.

Tworząca stożka ma długość 17, a wysokość stożka jest krótsza od średnicy jego podstawy o 22. Oblicz pole powierzchni całkowitej i objętość tego stożka.

*Ukryj

Tworząca stożka ma długość 25, a średnica podstawy stożka jest krótsza od wysokości stożka o 10. Oblicz pole powierzchni całkowitej i objętość tego stożka.

Połówkę koła o promieniu 12 zwinięto w stożek. Oblicz objętość i kąt rozwarcia tego stożka jeżeli długość łuku tej połówki koła jest obwodem podstawy, a jej promień jest tworzącą stożka.

W stożek o promieniu podstawy długości 9 i wysokości 12 wpisano walec, w ten sposób, że jedna podstawa walca zawiera się w podstawie stożka, a brzeg jego drugiej podstawy zawiera się w powierzchni bocznej stożka. Oblicz długość promienia podstawy i długość wysokości walca, wiedząc że pole powierzchni bocznej walca wynosi 48π .

*Ukryj

W stożek o promieniu podstawy długości 10 i wysokości 15 wpisano walec, w ten sposób, że jedna podstawa walca zawiera się w podstawie stożka, a brzeg jego drugiej podstawy zawiera się w powierzchni bocznej stożka. Oblicz długość promienia podstawy i długość wysokości walca, wiedząc że pole powierzchni bocznej walca wynosi 48π .

Objętość stożka jest równa  3 12π dm , a cosinus kąta α między wysokością, a tworzącą wynosi 0,8. Oblicz:

  • pole powierzchni bocznej stożka;
  • miarę kąta środkowego powierzchni bocznej stożka po rozwinięciu na płaszczyźnie.

W stożek o promieniu podstawy długości 6 wpisano walec, w ten sposób, że jedna podstawa walca zawiera się w podstawie stożka, a brzeg jego drugiej podstawy zawiera się w powierzchni bocznej stożka. Oblicz promień podstawy walca, jeżeli jego objętość stanowi 4 9 objętości stożka.

Czy kwadratową płytą o boku długości 2,2 m można całkowicie zakryć otwór w ziemi, który ma kształt stożka o wysokości 2 m i kącie rozwarcia 60∘ ?


PIC


Odpowiedź uzasadnij.

Do naczynia w kształcie odwróconego stożka wrzucono kulkę o promieniu r = 3 cm . Oceń, czy kulka będzie wystawać nad brzeg naczynia. Uzasadnij odpowiedź wykonując odpowiednie obliczenia, jeżeli wiadomo, że wysokość stożka wynosi 12 cm a promień podstawy 4 cm.