Punkty dzielą okrąg o środku w stosunku .
Różnica miar kątów wypukłych i jest równa
A) B) C) D)
Punkty dzielą okrąg o środku w stosunku .
Różnica miar kątów wypukłych i jest równa
A) B) C) D)
Na okręgu opisanym na kwadracie wybrano punkt w ten sposób, że .
Miara kąta oznaczonego na rysunku literą jest równa
A) B) C) D)
Punkty leżące na okręgu o środku są wierzchołkami sześciokąta foremnego. Miara zaznaczonego na rysunku kąta wpisanego jest równa
A) B) C) D)
Punkty leżące na okręgu o środku są wierzchołkami sześciokąta foremnego. Miara zaznaczonego na rysunku kąta wpisanego jest równa
A) B) C) D)
Punkty , oraz leżą na okręgu o środku w punkcie . Długość łuku , na którym jest oparty kąt wpisany , jest równa długości okręgu.
Miara kąta ostrego jest równa
A) B) C) D)
Kąt środkowy okręgu jest większy od kąta wpisanego opartego na tym samym łuku, o
A) 200% B) 150% C) 100% D) 50%
Kąt wpisany okręgu jest mniejszy od kąta środkowego opartego na tym samym łuku, o
A) 25% B) 50% C) 100% D) 150%
Odcinek jest średnicą okręgu o środku w punkcie i promieniu (zobacz rysunek). Cięciwa ma długość .
Miara kąta jest równa
A) B) C) D)
Odcinek jest średnicą okręgu o środku w punkcie i promieniu (zobacz rysunek). Cięciwa ma długość .
Sinus kąta jest równy
A) B) C) D)
Cięciwy i okręgu o środku przecinają się w punkcie tak, że (zobacz rysunek).
Jeżeli punkt jest punktem wspólnym prostych i , to miara kąta jest równa
A) B) C) D)
Punkty i leżą na okręgu o środku . Cięciwa przecina średnicę tego okręgu w punkcie tak, że . Kąt środkowy ma miarę (zobacz rysunek).
Kąt wpisany ma miarę
A) B) C) D)
Punkty i leżą na okręgu o środku . Cięciwa przecina średnicę tego okręgu w punkcie tak, że . Kąt środkowy ma miarę (zobacz rysunek).
Kąt wpisany ma miarę
A) B) C) D)
Punkty i leżą na okręgu o środku . Cięciwa przecina średnicę tego okręgu w punkcie tak, że . Kąt środkowy ma miarę (zobacz rysunek).
Kąt wpisany ma miarę
A) B) C) D)
Punkty i leżą na okręgu opisanym na trójkącie równobocznym (zobacz rysunek). Odcinek jest średnicą tego okręgu. Kąt wpisany ma miarę .
Zatem
A) B) C) D)
Dany jest czworokąt wpisany w okrąg o środku . Wówczas, jeśli , to miara kąta jest równa
A) B) C) D)
Dany jest czworokąt wpisany w okrąg o środku . Wówczas, jeśli , to miara kąta jest równa
A) B) C) D)
Dany jest czworokąt wpisany w okrąg o środku . Wówczas, jeśli , to miara kąta jest równa
A) B) C) D)
Punkty leżą na okręgu o środku w punkcie . Kąt środkowy ma miarę (zobacz rysunek).
Miara kąta jest równa
A) B) C) D)
Punkty leżą na okręgu o środku w punkcie . Kąt środkowy ma miarę (zobacz rysunek).
Miara kąta jest równa
A) B) C) D)
Trapez równoramienny jest wpisany w okrąg o środku (zobacz rysunek).
Różnica miar kątów i tego trapezu jest równa
A) B) C) D)
Cięciwy i okręgu przecinają się w punkcie w ten sposób, że i (zobacz rysunek).
Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.
Proste i są równoległe. | P | F |
Trójkąty i są podobne. | P | F |
Punkt jest środkiem okręgu (patrz rysunek). Zaznaczony kąt jest równy
A) B) C) D)
W trójkącie , wpisanym w okrąg o środku w punkcie , kąt ma miarę (zobacz rysunek).
Miara kąta ostrego jest równa
A) B) C) D)
Punkt jest środkiem okręgu (patrz rysunek). Zaznaczony kąt jest równy
A) B) C) D)
Średnice i okręgu o środku przecinają się pod kątem (tak jak na rysunku).
Miara kąta jest równa
A) B) C) D)
Punkt jest środkiem okręgu, na którym leżą punkty i (patrz rysunek). Jeśli i miara kąta wypukłego , to kąt wypukły jest równy
A) B) C) D)
Punkt jest środkiem okręgu. Kąt środkowy ma miarę
A) B) C) D)
Punkt jest środkiem okręgu. Kąt środkowy ma miarę
A) B) C) D)
Punkt jest środkiem okręgu.
Miara kąta wynosi
A) B) C) D)
Punkt jest środkiem okręgu.
Miara kąta wynosi
A) B) C) D)
W okręgu o środku dany jest kąt wpisany o mierze
Miara kąta jest równa
A) B) C) D)
Punkt jest środkiem okręgu (patrz rysunek). Zaznaczony kąt jest równy
A) B) C) D)
Na okręgu o środku leżą punkty i . Odcinek jest średnicą tego okręgu. Kąt między tą średnicą a cięciwą jest równy (zobacz rysunek).
Kąt między cięciwami i jest równy
A) B) C) D)
Na rysunku odcinek jest średnicą okręgu, a kąt ma miarę . Miara kąta jest równa
A) B) C) D)
Na rysunku odcinek jest średnicą okręgu, a kąt ma miarę . Miara kąta jest równa
A) B) C) D)
Punkty i leżą na okręgu o środku (zobacz rysunek). Miary zaznaczonych kątów i są odpowiednio równe
A) B) C) D)
Punkt jest środkiem okręgu (patrz rysunek). Zaznaczony kąt jest równy
A) B) C) D)
Na rysunku odcinek jest średnicą okręgu, a kąt ma miarę . Miara kąta jest równa
A) B) C) D)
Na okręgu o środku leżą punkty i . Odcinek jest średnicą tego okręgu. Kąt między tą średnicą a cięciwą jest równy (zobacz rysunek).
Kąt między cięciwami i jest równy
A) B) C) D)
Punkty i leżą na okręgu o środku (zobacz rysunek). Miary zaznaczonych kątów i są odpowiednio równe
A) B) C) D)
Miara kąta , zaznaczonego na rysunku, jest równa
A) B) C) D)
Punkty oraz leżą na okręgu o środku w punkcie . Kąt ma miarę , a kąt ma miarę (zobacz rysunek).
Miara kąta jest równa
A) B) C) D)
Punkty leżą na okręgu o środku w punkcie . Kąt ma miarę (zobacz rysunek).
Miara kąta ostrego jest równa
A) B) C) D)
Punkty leżą na okręgu o środku w punkcie . Kąt ma miarę (zobacz rysunek).
Miara kąta ostrego jest równa
A) B) C) D)
Punkty oraz leżą na okręgu o środku w punkcie . Kąt ma miarę , a kąt ma miarę (zobacz rysunek).
Miara kąta jest równa
A) B) C) D)
Miara kąta , zaznaczonego na rysunku, jest równa
A) B) C) D)