Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe/Geometria/Planimetria/Okrąg i koło/Kąty wpisane

Wyszukiwanie zadań

Bok AB czworokąta ABCD wpisanego w okrąg jest średnicą okręgu oraz |∡C | = 120 ∘ .


PIC


Zatem kąt α ma miarę
A) 30∘ B) 4 5∘ C) 50∘ D) 60∘

Ukryj Podobne zadania

Bok AB czworokąta ABCD wpisanego w okrąg jest średnicą okręgu oraz |∡C | = 110 ∘ .


PIC


Zatem kąt α ma miarę
A) 70∘ B) 5 5∘ C) 30∘ D) 20∘

Ukryj Podobne zadania

Na okręgu o środku w punkcie O leżą punkty A , B oraz C . Odcinek AC jest średnicą tego okręgu, a kąt środkowy AOB ma miarę 82∘ (zobacz rysunek).


PIC


Miara kąta OBC jest równa
A) 41∘ B) 4 5∘ C) 49∘ D) 51∘

Punkt O jest środkiem okręgu o średnicy AB (tak jak na rysunku). Kąt α ma miarę


PIC


A) 40∘ B) 5 0∘ C) 60∘ D) 80∘

W okręgu o środku O dany jest kąt wpisany ABC o mierze  ∘ 25 (patrz rysunek).


PIC


Miara kąta ACO jest równa
A) 75∘ B) 5 0∘ C) 70∘ D) 65∘

Na okręgu o środku w punkcie O leży punkt C (zobacz rysunek). Odcinek AB jest średnicą tego okręgu. Zaznaczony na rysunku kąt środkowy α ma miarę


PIC


A) 96∘ B) 8 4∘ C) 42∘ D) 132∘

Na okręgu o środku w punkcie O leży punkt C (zobacz rysunek). Odcinek AB jest średnicą tego okręgu. Zaznaczony na rysunku kąt środkowy α ma miarę


PIC


A) 116 ∘ B) 114∘ C) 11 2∘ D) 11 0∘

Na okręgu o środku w punkcie O wybrano trzy punkty A ,B ,C tak, że |∡AOB | = 70∘ , |∡OAC | = 25∘ . Cięciwa AC przecina promień OB (zobacz rysunek). Wtedy miara ∡OBC jest równa


PIC


A) α = 25∘ B) α = 60∘ C) α = 7 0∘ D) α = 85∘

Odcinek AB jest średnicą okręgu o środku O (rysunek).


PIC


Miara kąta α jest równa
A) 31∘ B) 2 6∘ C) 33∘ D) 52∘

Na okręgu o środku w punkcie O leżą punkty A , B oraz C . Odcinek AC jest średnicą tego okręgu, a kąt środkowy AOB ma miarę 84∘ (zobacz rysunek).


PIC


Miara kąta OBC jest równa
A) 52∘ B) 4 5∘ C) 48∘ D) 42∘

Na okręgu o środku w punkcie O wybrano trzy punkty A ,B ,C tak, że |∡AOB | = 78∘ , |∡OAC | = 35∘ . Cięciwa AC przecina promień OB (zobacz rysunek). Wtedy miara ∡OBC jest równa


PIC


A) α = 35∘ B) α = 39∘ C) α = 6 7∘ D) α = 74∘

Na okręgu o środku w punkcie O leżą punkty A,B ,C (zobacz rysunek).


PIC


Odcinek AC jest średnicą okręgu. Kąt AOB ma miarę 58∘ . Kąt OBC ma miarę równą
A) 29∘ B) 3 1∘ C) 39∘ D)  ∘ 41

Na okręgu o środku w punkcie O leżą punkty A,B ,C (zobacz rysunek).


PIC


Odcinek AC jest średnicą okręgu. Kąt AOB ma miarę 64∘ . Kąt OBC ma miarę równą
A) 42∘ B) 3 4∘ C) 32∘ D)  ∘ 44

Zaznaczony na rysunku kąt α jest równy


PIC


A) 5 0∘ B) 40∘ C) 30 ∘ D) 10∘

Ukryj Podobne zadania

Zaznaczony na rysunku kąt α jest równy


PIC


A) 4 0∘ B) 30∘ C) 20 ∘ D) 10∘

Punkty ABCD leżą na okręgu o środku S (zobacz rysunek). Miara kąta BDC jest równa


PIC


A) 91∘ B) 72,5∘ C) 18 ∘ D) 32∘

Punkty ABCD leżą na okręgu o środku S (zobacz rysunek). Miara kąta BDC jest równa


PIC


A) 58∘ B) 8 7∘ C) 29∘ D) 32∘

Jaką miarę ma kąt α ?


PIC


A) 2 36∘ B) 59∘ C) 62 ∘ D) 100 ∘

Ukryj Podobne zadania

Jaką miarę ma kąt α ?


PIC


A) 2 44∘ B) 58∘ C) 62 ∘ D) 116 ∘

Punkty A ,B ,C ,D ,E leżą na okręgu o środku O , przy czym AB jest średnicą tego okręgu, D jest środkiem łuku AB oraz |∡ABC | = 50 ∘ .


PIC


Miara kąta oznaczonego na rysunku literą α jest równa
A) 40∘ B) 5 0∘ C) 30∘ D) 45∘

Punkty A ,B,C ,D leżą na okręgu w podanej kolejności. Cięciwy AC i BD przecinają się w punkcie M . Zatem
A) ∡BMC = 2 ∡AMD B) ∡BMC = 2∡CDB C) ∡CAB = ∡BCD D) ∡BAC = ∡CDB

Ukryj Podobne zadania

Punkty A ,B,C ,D leżą na okręgu w podanej kolejności. Cięciwy AC i BD przecinają się w punkcie M . Zatem
A) ∡BMC = 2 ∡CAB B) ∡BDA = ∡ACB C) ∡BMC = 2∡CDB D) ∡BAC = ∡BDA

Punkty A ,B,C ,D leżą na okręgu w podanej kolejności. Cięciwy AC i BD przecinają się w punkcie M . Zatem
A) ∡DAC = ∡DBC B) ∡BMC = 2 ∡BDC C) ∡BMC = 2∡BAC D) ∡CAB = ∡CAD

Na rysunku przedstawiono okrąg o środku S i kąt wpisany o mierze  ∘ 35 .


PIC


Zaznaczony na rysunku kąt α ma miarę
A) 40∘ B) 5 0∘ C) 70∘ D) 30∘

Punkty A i B dzielą okrąg na dwa łuki, przy czym miary kątów wpisanych opartych na tych łukach różnią się o 20 ∘ . Wynika stąd, że większy z tych katów ma miarę
A) 100 ∘ B) 200∘ C)  ∘ 50 D)  ∘ 80

Dany jest okrąg o środku S i promieniu r , długość łuku  1 AB = 4 ⋅ 2π ⋅r (patrz rysunek).


PIC


Miara kąta α jest równa
A) 40∘ B) 4 5∘ C) 50∘ D) 55∘

Ukryj Podobne zadania

Dany jest okrąg o środku S i promieniu r , długość łuku  1 AB = 5 ⋅ 2π ⋅r (patrz rysunek).


PIC


Miara kąta α jest równa
A) 36∘ B) 3 0∘ C) 45∘ D) 72∘

Punkty A ,B ,C ,D ,E,F ,G,H ,I,J dzielą okrąg o środku S na dziesięć równych łuków. Oblicz miarę kąta DF S zaznaczonego na rysunku.


PIC


A) 5 4∘ B) 72∘ C) 60 ∘ D) 45∘

Ukryj Podobne zadania

Punkty A ,B ,C ,D ,E,F ,G,H ,I,J dzielą okrąg o środku S na dziesięć równych łuków. Oblicz miarę kąta SHE zaznaczonego na rysunku.


PIC


A) 5 4∘ B) 72∘ C) 36 ∘ D) 45∘

Odcinek AB jest średnicą okręgu o środku w punkcie O i promieniu r (zobacz rysunek). Cięciwa AC ma długość  √ -- r 3 , więc


PIC


A) |∡AOC | = 130∘ B) |∡ABC | = 90∘ C) |∡BOC | = 60∘ D) |∡BAC | = 45∘

Trójkąty ABC i ACD są wpisane w okrąg o środku O . Odcinek AB jest średnicą okręgu.


ZINFO-FIGURE


Miara kąta α zaznaczonego na rysunku jest równa
A) 105 ∘ B) 115∘ C) 10 0∘ D) 95 ∘

Ukryj Podobne zadania

Trójkąty ABC i ACD są wpisane w okrąg o środku O . Odcinek AB jest średnicą okręgu.


PIC


Miara kąta α zaznaczonego na rysunku jest równa
A) 105 ∘ B) 115∘ C) 10 0∘ D) 95 ∘

Trójkąty ABC i ACD są wpisane w okrąg o środku O . Odcinek AB jest średnicą okręgu.


PIC


Miara kąta α zaznaczonego na rysunku jest równa
A) 105 ∘ B) 115∘ C) 10 0∘ D) 95 ∘

Punkty A ,B,C leżą na okręgu o środku S . Punkt D jest punktem przecięcia cięciwy AC i średnicy okręgu poprowadzonej z punktu B . Miara kąta BSC jest równa α , a miara kąta ADB jest równa γ (zobacz rysunek).


ZINFO-FIGURE


Wtedy kąt ABD ma miarę
A) α2 + γ − 180∘ B) 180 ∘ − α2 − γ C) 180 ∘ − α − γ D) α+ γ − 180∘

Punkty A ,B,C ,D ,E,F ,G,H dzielą okrąg na 8 równych łuków. Miara kąta GAD zaznaczonego na rysunku jest równa


PIC


A) 4 5∘ B) 62,5∘ C) 67,5 ∘ D) 75∘

Ukryj Podobne zadania

Punkty A ,B,C ,D ,E,F ,G,H ,I,J dzielą okrąg o środku S na 10 równych łuków. Oblicz miarę kąta wpisanego BGE zaznaczonego na rysunku.


PIC


A) 5 4∘ B) 72∘ C) 60 ∘ D) 45∘

Punkty A ,B,C ,D ,E,F ,G,H dzielą okrąg na 8 równych łuków. Miara kąta GAE zaznaczonego na rysunku jest równa


PIC


A) 4 5∘ B) 62,5∘ C) 67,5 ∘ D) 75∘

Punkty A ,B,C ,D ,E,F ,G,H ,I,J dzielą okrąg o środku S na 10 równych łuków. Oblicz miarę kąta wpisanego AGE zaznaczonego na rysunku.


PIC


A) 5 4∘ B) 72∘ C) 60 ∘ D) 144 ∘

Punkty A ,B,C ,D ,E,F ,G okręgu są wierzchołkami siedmiokąta foremnego. Miara zaznaczonego na rysunku kąta wpisanego BDF jest równa


PIC


A)  ∘ 7207-- B)  ∘ 1807-- C) 1080∘ 7 D) 540∘- 7

Punkty A ,B,C ,D ,E,F ,G,H ,I dzielą okrąg na 9 równych łuków. Miara zaznaczonego na rysunku kąta wpisanego AHD jest równa


PIC


A) 9 0∘ B) 60∘ C) 45 ∘ D) 30∘

Punkt S jest środkiem okręgu.


PIC


Miara kąta środkowego α jest równa
A) 36∘ B) 72∘ C) 12 0∘ D) 14 4∘

Trójkąt ABC jest wpisany w okrąg o środku O . Miara kąta CAO jest równa 70 ∘ (zobacz rysunek).


PIC


Wtedy miara kąta ABC jest równa
A) 20∘ B) 2 5∘ C) 30∘ D) 35∘

Bok AB trójkąta ABC jest średnicą okręgu o środku S , a boki AC i BC przecinają ten okrąg odpowiednio w punktach D i E (zobacz rysunek). Ponadto |∡ABC | = 47∘ i |∡BAC | = 67∘ .


PIC


Zaznaczony na rysunku kąt α jest równy
A) 43∘ B) 2 4∘ C) 23∘ D) 20∘

Punkt O jest środkiem okręgu. Kąt wpisany BAD ma miarę


PIC


A) 1 70∘ B) 70∘ C) 95 ∘ D) 85∘

Ukryj Podobne zadania

Kąt środkowy oparty na łuku, którego długość jest równa 4 9 długości okręgu, ma miarę
A) 160 ∘ B) 80∘ C) 40 ∘ D) 20∘

Ukryj Podobne zadania

Kąt środkowy oparty na łuku, którego długość jest równa 3 8 długości okręgu, ma miarę
A) 270 ∘ B) 135∘ C) 67 ,5 ∘ D) 33,7 5∘

W okręgu o środku w punkcie B kąt środkowy α i kąt wpisany β oparte są na tym samym łuku wyznaczonym przez punkty A i C leżące na okręgu. Suma miar tych kątów jest równa kątowi prostemu. Wierzchołek kąta β znajduje się w punkcie D . Wynika stąd, że trójkąt
A) ADC jest równoboczny B) ADC jest prostokątny
C) ABC jest równoboczny D) ABC jest prostokątny

Ukryj Podobne zadania

W okręgu o środku w punkcie B kąt środkowy α i kąt wpisany β oparte są na tym samym łuku wyznaczonym przez punkty A i C leżące na okręgu. Różnica miar tych kątów jest równa 30∘ . Wierzchołek kąta β znajduje się w punkcie D . Wynika stąd, że trójkąt
A) ABC jest równoboczny B) ADC jest prostokątny
C) ADC jest równoboczny D) ABC jest prostokątny

W okręgu o środku w punkcie B kąt środkowy α i kąt wpisany β oparte są na tym samym łuku wyznaczonym przez punkty A i C leżące na okręgu. Suma miar tych kątów jest równa 135∘ . Wierzchołek kąta β znajduje się w punkcie D . Wynika stąd, że trójkąt
A) ADC jest równoboczny B) ADC jest prostokątny
C) ABC jest równoboczny D) ABC jest prostokątny

Strona 3 z 4
spinner