Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe/Kombinatoryka

Wyszukiwanie zadań

Pan Jakub ma 4 marynarki, 7 par różnych spodni i 10 różnych koszul. Na ile różnych sposobów może się ubrać, jeśli zawsze zakłada marynarkę, spodnie i koszulę.
A) 280 B) 21 C) 28 D) 70

Ukryj Podobne zadania

Pan Tomasz ma 5 marynarek, 9 par różnych spodni i 6 różnych koszul. Na ile różnych sposobów może się ubrać, jeśli zawsze zakłada marynarkę, spodnie i koszulę.
A) 20 B) 45 C) 280 D) 270

Pan Jakub ma 8 marynarek, 5 par różnych spodni i 9 różnych koszul. Na ile różnych sposobów może się ubrać, jeśli zawsze zakłada marynarkę, spodnie i koszulę.
A) 240 B) 22 C) 360 D) 90

Andrzej ma w szafie 4 koszule: czerwoną, żółtą, zieloną i niebieską; 3 pary spodni: niebieskie, czarne i szare; oraz 5 par butów: czarne, szare, zielone, czerwone i niebieskie. Andrzej wybiera z szafy zestaw ubrania: jedną koszulę, jedną parę spodni i jedną parę butów. Zestawy ubrania wybierane przez Andrzeja określimy jako różne, gdy będą różniły się kolorem chociaż jednego rodzaju elementu ubioru w zestawie. Liczba wszystkich możliwych, różnych zestawów ubrania, jakie może wybrać Andrzej, jest równa
A) 12 B) 72 C) 60 D) 720

Pan Łukasz ma 3 marynarki, 8 par różnych spodni i 11 różnych koszul. Na ile różnych sposobów może się ubrać, jeśli zawsze zakłada marynarkę, spodnie i koszulę.
A) 280 B) 22 C) 132 D) 264

Wyrażenie (n+2)!⋅(n−-2)!- n!⋅n! dla liczby naturalnej n ≥ 2 jest równe
A) n2 − 4 B) (n 2 − 4)(n2 − 1) C) n2+3n+-2 n2−n D) n+2- n

Ukryj Podobne zadania

Wyrażenie (n+2)!⋅(n−-1)!- (n+1)!⋅n! dla liczby naturalnej n ≥ 1 jest równe
A) n2 + n − 2 B) (n 2 − 4)(n2 − 1) C) n2+n−-2 n2+n D) n+2- n

Wszystkich liczb naturalnych sześciocyfrowych, w których zapisie dziesiętnym każda z cyfr: 0 i 5 występuje dokładnie 3 razy jest
A) 10 B) 32 C) 16 D) 12

Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne mają być tego samego koloru, a pas znajdujący się między nimi ma być innego koloru. Liczba różnych takich flag, które można uszyć, mając do dyspozycji tkaniny w 10 kolorach, jest równa


PIC


A) 100 B) 99 C) 90 D) 19

Ukryj Podobne zadania

Każdą z sześciu krawędzi sześciokątnej ramki postanowiono pomalować na jeden z 10 kolorów, przy czym przeciwległe krawędzie mają mieć ten sam kolor, a żadne dwie sąsiednie krawędzie nie mogą mieć tego samego koloru. Liczba różnych możliwości pokolorowania ramki jest równa


PIC


A) 720 B) 1000 C) 30 D) 27

Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne mają być tego samego koloru, a pas znajdujący się między nimi ma być innego koloru. Liczba różnych takich flag, które można uszyć, mając do dyspozycji tkaniny w 11 kolorach, jest równa


PIC


A) 121 B) 110 C) 90 D) 21

Ile różnych wyrazów z sensem lub bez sensu można ułożyć z liter wyrazu: MATEMATYKA?
A) 10! B) 30240 C) 151200 D) 3 !2!2!

Ile jest wszystkich liczb pięciocyfrowych, większych 43080, utworzonych wyłącznie z cyfr 1, 2, 3, 4 przy założeniu, że cyfry mogą się powtarzać, ale nie wszystkie z tych cyfr muszą być wykorzystane?
A) 48 B) 15 C) 128 D) 192

Ukryj Podobne zadania

Ile jest wszystkich liczb pięciocyfrowych, większych 53079, utworzonych wyłącznie z cyfr 2, 3, 4, 5 przy założeniu, że cyfry mogą się powtarzać, ale nie wszystkie z tych cyfr muszą być wykorzystane?
A) 48 B) 15 C) 128 D) 192

Z cyfr 1, 2, 3, 4, 5, 6 tworzymy sześciocyfrowe liczby o niepowtarzających się cyfrach w taki sposób, że cyfry parzyste zapisane są obok siebie. Powstało w ten sposób
A) 36 liczb B) 132 liczby C) 144 liczby D) 720 liczb

Pan Eugeniusz szykując się rano do pracy wybiera jeden spośród swoich 12 zegarków oraz dwa spośród 22 wiecznych piór, przy czym jedno z nich traktuje jako pióro zapasowe. Na ile sposobów może wybrać zestaw składający się z zegarka i dwóch piór, głównego i zapasowego?
A) 2777 B) 34 C) 5544 D) 5808

Ukryj Podobne zadania

Pan Henryk szykując się rano do pracy wybiera jeden spośród swoich 10 zegarków oraz dwa spośród 18 wiecznych piór, przy czym jedno z nich traktuje jako pióro zapasowe. Na ile sposobów może wybrać zestaw składający się z zegarka i dwóch piór, głównego i zapasowego?
A) 45 B) 46 C) 3240 D) 3060

Ile jest liczb naturalnych pięciocyfrowych, których iloczyn cyfr jest równy 70?
A) 60 B) 36 C) 12 D) 125

W pewnym mieście na czas festynu postanowiono rozstawić stragany. Ustalono, że będzie można ustawić po 3 stragany po każdej stronie drogi. Na ile sposobów można ustawić te stragany?
A) 6 B) 24 C) 36 D) 720

Ukryj Podobne zadania

W trakcie zawodów sportowych ośmioro uczniów miało ustawić się w dwóch rzędach po 4 osoby. Na ile sposobów mogą ustawić się ci uczniowie?
A) 4 B) 576 C) 40320 D)  8 8

Rozważamy wszystkie kody czterocyfrowe utworzone tylko z cyfr 1, 3, 6, 8, przy czym w każdym kodzie każda z tych cyfr występuje dokładnie jeden raz. Liczba wszystkich takich kodów jest równa
A) 4 B) 10 C) 24 D) 16

Dany jest zbiór trzynastu liczb { 1, 2 , 3, 4, 5 , 6, 7, 8 , 9, 10, 11, 12 , 13} , z którego losujemy jednocześnie dwie liczby. Wszystkich różnych sposobów wylosowania z tego zbioru dwóch liczb, których iloczyn jest liczbą parzystą, jest
A)  7 (2)+ 49 B)  6 7 (1)⋅ (1) + 49 C)  13 7 (2 )− (2) D)  13 6 (2) − (2)

Ile jest liczb naturalnych dwucyfrowych większych od 27 , które mają dwie różne cyfry?
A) 63 B) 72 C) 65 D) 18

Ukryj Podobne zadania

Ile jest liczb naturalnych dwucyfrowych mniejszych od 6 3 , które mają dwie różne cyfry?
A) 45 B) 48 C) 63 D) 58

Ile jest liczb naturalnych trzycyfrowych większych od 694, które mają trzy różne cyfry?
A) 216 B) 219 C) 221 D) 246

Ukryj Podobne zadania

Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 4?
A) 21 B) 22 C) 23 D) 24

Ile jest nieujemnych liczb całkowitych mniejszych niż  8 10 , które są zapisane wyłącznie przy użyciu cyfr 0, 1 i 2?
A) 19683 B) 59049 C) 6561 D) 512

Ile jest wszystkich liczb naturalnych dwucyfrowych, w których obie cyfry są parzyste?
A) 16 B) 20 C) 24 D) 25

Ukryj Podobne zadania

Ile jest wszystkich liczb naturalnych dwucyfrowych, w których pierwsza cyfra jest parzysta, a druga nieparzysta?
A) 16 B) 20 C) 24 D) 25

Wszystkich liczb dwucyfrowych o różnych cyfrach jest
A) 90 B) 81 C) 82 D) 80

Ile jest wszystkich liczb naturalnych dwucyfrowych, w których obie cyfry są nieparzyste?
A) 16 B) 20 C) 24 D) 25

Liczb dwucyfrowych większych od 50 o nieparzystych cyfrach jest
A) 12 B) 25 C) 49 D) 15

Ile jest liczb naturalnych pięciocyfrowych, w których iloczyn cyfr jest równy 0?
A) 59049 B) 30951 C) 3439 D) 6561

Wszystkich liczb naturalnych dwucyfrowych, których obie cyfry są mniejsze od 5 jest
A) 16 B) 20 C) 25 D) 30

Ukryj Podobne zadania

Ze zbioru {0,1,2,5,7} losujemy jedną liczbę, zapisujemy ją, a następnie bez zwracania losujemy i zapisujemy drugą. Ile w ten sposób otrzymamy liczb dwucyfrowych?
A) 20 B) 16 C) 12 D) 10

Wszystkich liczb naturalnych dwucyfrowych, których obie cyfry są mniejsze od 5 jest
A) 17 B) 18 C) 19 D) 20

Wszystkich liczb naturalnych dwucyfrowych, których obie cyfry są większe od 4 jest
A) 16 B) 20 C) 25 D) 30

Liczba  20 (10) jest podzielna przez
A) 5 B) 33 C) 221 D) 51

Ukryj Podobne zadania

Liczba  30 (15) jest podzielna przez
A) 7 B) 55 C) 143 D) 85

Ośmiu znajomych, wśród których jest jedno małżeństwo, kupiło bilety do kina na kolejne miejsca w jednym rzędzie (w rzędzie było dokładnie 8 miejsc). Wszystkich możliwych sposobów zajęcia miejsc tak, aby małżonkowie siedzieli obok siebie, jest:
A) 40320 B) 5040 C) 10080 D) 720

Ukryj Podobne zadania

Pięć osób: Asia, Marta, Agnieszka, Edyta i Piotrek wybrało się do kina. Na ile sposobów mogą te osoby usiąść w jednym rzędzie na pięciu kolejnych miejscach tak, żeby Agnieszka i Piotrek siedzieli obok siebie?
A) 48 B) 36 C) 24 D) 12

Pięć osób: Wojtek, Marta, Agnieszka, Edyta i Piotrek wybrało się do kina. Na ile sposobów mogą te osoby usiąść w jednym rzędzie na pięciu kolejnych miejscach tak, żeby Piotrek siedział pomiędzy Agnieszką i Edytą?
A) 48 B) 36 C) 24 D) 12

Pięć osób: Arek, Marta, Agnieszka, Edyta i Piotrek wybrało się do kina. Na ile sposobów mogą te osoby usiąść w jednym rzędzie na pięciu kolejnych miejscach tak, żeby Agnieszkę i Piotrka rozdzielała jedna osoba?
A) 48 B) 36 C) 24 D) 12

Strona 1 z 5
spinner