Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Na rysunku przedstawiono okrąg o środku O , który jest styczny do wszystkich boków trapezu równoramiennego ABCD . Ramiona AD i BC są styczne do tego okręgu odpowiednio w punktach K i L . Kąt wypukły KOL ma miarę 1 50∘ .


PIC


Miara α kąta ostrego tego trapezu jest równa
A) 75∘ B) 8 0∘ C) 85∘ D) 65∘

Dany jest trapez ABCD , w którym przekątna AC jest prostopadła do ramienia BC , |AD | = |DC | oraz |∡ABC | = 50∘ (zobacz rysunek).


PIC


Stąd wynika, że
A) β = 100∘ B) β = 120∘ C) β = 110∘ D) β = 130∘

*Ukryj

Dany jest trapez ABCD , w którym przekątna AC jest prostopadła do ramienia BC , |AD | = |DC | oraz |∡ADC | = 100∘ (zobacz rysunek).


PIC


Stąd wynika, że
A) β = 40∘ B) β = 50∘ C) β = 60∘ D) β = 80∘

Dany jest trapez prostokątny KLMN , którego podstawy mają długości |KL | = a , |MN | = b , a > b . Kąt KLM ma miarę 60∘ . Długość ramienia LM tego trapezu jest równa


PIC


A) a − b B) 2(a − b) C) a + 12b D) a+2b-

*Ukryj

Dany jest trapez prostokątny KLMN , którego podstawy mają długości |KL | = a , |MN | = b , a > b . Kąt KLM ma miarę 45∘ . Długość ramienia LM tego trapezu jest równa


PIC


A) a − b B)  √ -- (a− b ) 3 C) a+2b- D)  √ -- (a − b) 2

Trapez ABCD podzielono przekątną AC na dwa trójkąty. Punkty O i S są środkami okręgów wpisanych w trójkąty ACD i ABC , a odcinek OS przecina przekątną AC w punkcie K (zobacz rysunek). Stosunek długości okręgów o środkach O i S jest równy 3 5 , a odcinek OS ma długość 24.


PIC


Wtedy
A) |KS | = 18 B) |KS | = 12 C) |KS | = 16 D) |KS | = 15

W trapezie równoramiennym ABCD (AB ∥ CD ) wysokość DE podzieliła podstawę na odcinki długości |AE | = 3 cm i |EB | = 7 cm . Odcinek łączący środki ramion w tym trapezie ma długość
A) 5 cm B) 7 cm C) 4 cm D)  √ -- 5 2 cm

*Ukryj

W trapezie równoramiennym ABCD (AB ∥ CD ) wysokość DE podzieliła podstawę na odcinki długości |AE | = 3 cm i |EB | = 8 cm . Odcinek łączący środki ramion w tym trapezie ma długość
A) 5 cm B) 7 cm C) 8 cm D)  √ -- 5 2 cm

Wysokość trapezu równoramiennego o kącie ostrym  ∘ 60 i ramieniu długości  √ -- 2 3 jest równa
A) √ -- 3 B) 3 C)  √ -- 2 3 D) 2

*Ukryj

Wysokość trapezu równoramiennego o kącie ostrym  ∘ 30 i ramieniu długości  √ -- 2 3 jest równa
A) √ -- 3 B) 3 C)  √ -- 2 3 D) 2

Wysokość trapezu równoramiennego o kącie ostrym  ∘ 30 i ramieniu długości  √ -- 4 2 jest równa
A)  √ -- 4 2 B) 2 C)  √ -- 2 2 D) √ -- 2

Różnica długości podstaw trapezu równoramiennego o kącie ostrym  ∘ 6 0 i ramieniu długości 12 może być równa
A) 6 B) 8 C) 9 D) 12

Dany jest trapez równoramienny ABCD o podstawach AB i CD . Przedłużenia ramion przecinają się w punkcie O . Jeśli |AB | = 30 ,|CD | = 25,|AD | = |BC | = 6 , to
A) |BO | = 36 B) |BO | = 30 C) |BO | = 9,5 D) |BO | = 2 4

*Ukryj

Dany jest trapez równoramienny o podstawach AB ,CD . Przedłużenia ramion przecinają się w punkcie O . Jeśli |AB | = 43,|CD | = 38,|AC | = |BD | = 5 , to
A) BO = 38 B) BO = 30 C) BO = 4 3 D) BO = 24

Dany jest trapez równoramienny o podstawach AB ,CD . Przedłużenia ramion przecinają się w punkcie O . Jeśli |AB | = 30,|CD | = 25,|AC | = |BD | = 6 , to
A) DO = 36 B) DO = 3 0 C) DO = 9,5 D) DO = 2 4

Przekątna trapezu jest jednocześnie dwusieczną kąta ostrego przy dłuższej podstawie trapezu. Ramię trapezu ma długość p , zaś krótsza podstawa długość a . Wobec tego
A) a < p 2 B) a = 1,2p C) a = p D) a = 80%p

Stosunek długości ramion trapezu prostokątnego jest równy 2:1. Miara kąta rozwartego tego trapezu jest równa
A) 150 ∘ B) 140∘ C) 12 0∘ D) 60 ∘

*Ukryj

Stosunek długości ramion trapezu prostokątnego jest równy  √ -- 1 : 2 . Miara kąta rozwartego tego trapezu jest równa
A) 150 ∘ B) 45∘ C) 12 0∘ D) 13 5∘

W trapezie KLMN , w którym KL ||MN , kąt LKN jest prosty (zobacz rysunek) oraz dane są: |MN | = 3 ,  √ -- |KN | = 4 3 , |∡KLM | = 6 0∘ . Pole tego trapezu jest równe:


PIC


A)  √ -- 4+ 2 3 B)  √ -- 10 3 C)  √ -- 20 3 D)  √ -- 24 + 6 3

*Ukryj

W trapezie KLMN , w którym KL ||MN , kąt LKN jest prosty (zobacz rysunek) oraz dane są: |MN | = 3 ,  √ -- |KN | = 4 3 , |∡KLM | = 3 0∘ . Pole tego trapezu jest równe:


PIC


A)  √ -- 4+ 2 3 B)  √ -- 28 3 C)  √ -- 36 3 D)  √ -- 24 + 6 3

Pole trapezu prostokątnego ABCD przedstawionego na rysunku, jest równe


PIC


A)  √ -- 32(2 + 3 3) B)  √ -- 3(2+ 3 3) C)  √ -- 3(2 + 3) 2 D)  √ -- 3(2 + 3)

W trapezie równoramiennym kąt ostry ma miarę  ∘ 6 0 , a podstawy mają długości 12 i 6. Wysokość tego trapezu jest równa
A)  √ -- 3 3 B) √ -- 3 C) 3 2 D) √ 3 -3-

Podstawy trapezu równoramiennego ABCD mają długości 8 i 16, a przekątne tego trapezu mają długość 15 (zobacz rysunek).


PIC


Wtedy miara α kąta ostrego BAC tego trójkąta spełnia warunek
A) 36∘ < α < 37∘ B) 53 ∘ < α < 54 ∘ C) 54∘ < α < 55∘ D) 35∘ < α < 36∘

W trapezie równoramiennym podstawy mają długości 10 i 16, a kąt rozwarty ma miarę 1 20∘ . Obwód trapezu jest równy
A) 38 B) 26 C)  √ -- 26 + 6 3 D) 32

*Ukryj

W trapezie równoramiennym podstawy mają długości 8 i 10, a kąt rozwarty ma miarę 135∘ . Obwód trapezu jest równy
A) 24 B) 22 C)  √ -- 18 + 2 3 D)  √ -- 18 + 2 2

W trapezie równoramiennym podstawy mają długości 5 i 8, a kąt rozwarty ma miarę 150∘ . Obwód trapezu jest równy
A) 19 B)  √ -- 13 + 3 C) 13 + 2√ 3- D) 16

Długość ramienia BC trapezu prostokątnego jest dwa razy większa od różnicy długości jego podstaw. Kąt ABC ma miarę


PIC


A) 3 0∘ B) 45∘ C) 60 ∘ D) 75∘

*Ukryj

Długość ramienia AD trapezu prostokątnego jest równa różnicy długości jego podstaw. Kąt ABC ma miarę


PIC


A) 3 0∘ B) 45∘ C) 60 ∘ D) 75∘

W trapezie miary kątów ostrych są równe  ∘ 30 i  ∘ 60 . Wówczas stosunek długości krótszego ramienia do dłuższego jest równy:
A) √ - --3 3 B) 1 3 C) √- -2- 2 D) 1 2

Dany jest trapez równoramienny KLMN , którego podstawy mają długości |KL | = a , |MN | = b , a > b . Kąt KLM ma miarę 60∘ . Długość ramienia LM tego trapezu jest równa


PIC


A) 2(a − b) B) a − b C) a + 12b D) a+2b-

Miary dwóch kątów trapezu równoramiennego pozostają w stosunku 5 : 7 . Wynika stąd, że największy kąt tego trapezu ma miarę
A) 105 ∘ B) 15∘ C) 75 ∘ D) 125 ∘

W trapezie ABCD (AB ∥ CD ) dłuższa podstawa ma długość |AB | = 10 cm . Odcinek łączący środki ramion w tym trapezie ma długość 7 cm. Długość krótszej podstawy wynosi
A) 5 cm B) 7 cm C) 4 cm D)  √ -- 5 2 cm

Różnica miar kątów wewnętrznych przy ramieniu trapezu równoramiennego, który nie jest równoległobokiem, jest równa 40∘ . Miara kąta przy krótszej podstawie tego trapezu jest równa
A) 120 ∘ B) 110∘ C)  ∘ 80 D)  ∘ 70

*Ukryj

Różnica miar kątów wewnętrznych przy ramieniu trapezu równoramiennego, który nie jest równoległobokiem, jest równa 60∘ . Miara kąta przy krótszej podstawie tego trapezu jest równa
A) 120 ∘ B) 150∘ C)  ∘ 80 D)  ∘ 60

Różnica miar kątów wewnętrznych przy ramieniu trapezu równoramiennego, który nie jest równoległobokiem, jest równa 60∘ . Miara kąta przy krótszej podstawie tego trapezu jest równa
A) 120 ∘ B) 110∘ C)  ∘ 80 D)  ∘ 70

Strona 1 z 2>