Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań

Podstawą ostrosłupa prawidłowego ABCS jest trójkąt równoboczny ABC o boku długości 6. Na krawędziach bocznych BS i CS wybrano punkty, odpowiednio D i E , takie że |BD | = |CE | oraz |DE | = 4 (zobacz rysunek). Płaszczyzna ADE jest prostopadła do płaszczyzny ściany bocznej BCS ostrosłupa.


PIC


Oblicz objętość tego ostrosłupa.

Wielomian W określony wzorem  2019 2000 W (x) = x − 3x + 2x + 6
A) jest podzielny przez (x − 1) i z dzielenia przez (x+ 1) daje resztę równą 6.
B) jest podzielny przez (x+ 1) i z dzielenia przez (x − 1 ) daje resztę równą 6.
C) jest podzielny przez (x − 1) i jest podzielny przez (x + 1) .
D) nie jest podzielny ani przez (x− 1) , ani przez (x + 1) .

Przekątna AC prostokąta ABCD ma długość 70. Na boku AB obrano punkt E , na przekątnej AC obrano punkt F , a na boku AD obrano punkt G – tak, że czworokąt AEF G jest prostokątem (zobacz rysunek). Ponadto |EF | = 3 0 i |GF | = 40 .


PIC


Obwód prostokąta ABCD jest równy
A) 158 B) 196 C) 336 D) 490

Długość przekątnej sześcianu jest równa 6. Stąd wynika, że pole powierzchni całkowitej tego sześcianu jest równe
A) 72 B) 48 C) 152 D) 108

Ciąg geometryczny (an ) jest określony wzorem  n− 1 an = 2 , dla każdej liczby naturalnej n ≥ 1 . Iloraz tego ciągu jest równy
A) 12 B) (−2 ) C) 2 D) 1

Dany jest trapez ABCD , w którym przekątna AC jest prostopadła do ramienia BC , |AD | = |DC | oraz |∡ABC | = 50∘ (zobacz rysunek).


ZINFO-FIGURE


Stąd wynika, że
A) β = 100∘ B) β = 120∘ C) β = 110∘ D) β = 130∘

Ramię trapezu równoramiennego ABCD ma długość √ --- 26 . Przekątne w tym trapezie są prostopadłe, a punkt ich przecięcia dzieli je w stosunku 2:3. Oblicz pole tego trapezu.

Tworząca stożka ma długość 4 i jest nachylona do płaszczyzny podstawy pod kątem 45∘ . Wysokość tego stożka jest równa
A)  √ -- 2 2 B) 16π C) 4√ 2- D) 8π

W kartezjańskim układzie współrzędnych (x ,y) dany jest okrąg O o środku S = (− 1,2) i promieniu 3. Okrąg O jest określony równaniem
A) (x − 1)2 + (y + 2)2 = 9 B)  2 2 (x − 1) + (y + 2) = 3
C)  2 2 (x + 1) + (y − 2) = 9 D) (x + 1)2 + (y − 2)2 = 3

Dana jest funkcja f określona wzorem  25x2−9- f(x) = x2+ 2 dla każdej liczby rzeczywistej x . Oblicz wartość f′(10) pochodnej tej funkcji dla argumentu 10.

Wierzchołkiem paraboli o równaniu  2 y = − 3(x − 2) + 4 jest punkt o współrzędnych
A) (− 2,− 4) B) (− 2 ,4 ) C) (2,− 4) D) (2,4)

Średnia arytmetyczna sześciu liczb naturalnych: 31, 16, 25, 29, 27, x , jest równa x2 . Mediana tych liczb jest równa
A) 26 B) 27 C) 28 D) 29

Wszystkich liczb pięciocyfrowych, w których występują wyłącznie cyfry 0, 2, 5, jest
A) 12 B) 36 C) 162 D) 243

Strona 3 z 111
spinner