Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań

Krawędź boczna ostrosłupa prawidłowego czworokątnego jest nachylona do płaszczyzny podstawy pod kątem α takim, że sin α = 13 . Oblicz cosinus kąta nachylenia ściany bocznej do płaszczyzny podstawy.

Pierwiastkami trójmianu kwadratowego f o współczynniku − 3 przy najwyższej potędze są liczby x1 = − 6,x2 = 4 . Oblicz f(− 10 ) .

Rozwinięcie dziesiętne nieskracalnego ułamka zwykłego u jest ułamkiem dziesiętnym okresowym, który można zapisać w postaci 0,(xyz ) . Wiemy, że cyfra znajdująca się na 22 miejscu po przecinku tego rozwinięcia jest równa 7, cyfra znajdująca się na miejscu 26 jest równa 3, a cyfra znajdująca się na miejscu 15 jest równa 2. Licznik ułamka u jest więc równy
A) 732 B) 273 C) 244 D) 723

Ukryj Podobne zadania

Rozwinięcie dziesiętne nieskracalnego ułamka zwykłego u jest ułamkiem dziesiętnym okresowym, który można zapisać w postaci 0,(xyz ) . Wiemy, że cyfra znajdująca się na 16 miejscu po przecinku tego rozwinięcia jest równa 2, cyfra znajdująca się na miejscu 23 jest równa 3, a cyfra znajdująca się na miejscu 18 jest równa 7. Licznik ułamka u jest więc równy
A) 79 B) 273 C) 237 D) 244

Rozwinięcie dziesiętne nieskracalnego ułamka zwykłego u jest ułamkiem dziesiętnym okresowym, który można zapisać w postaci 0,(xyz ) . Wiemy, że cyfra znajdująca się na 19 miejscu po przecinku tego rozwinięcia jest równa 3, cyfra znajdująca się na miejscu 26 jest równa 7, a cyfra znajdująca się na miejscu 15 jest równa 2. Licznik ułamka u jest więc równy
A) 372 B) 273 C) 244 D) 124

Ukryj Podobne zadania

Dany jest trójkąt równoboczny ABC o boku długości 24. Punkt E leży na boku AB , a punkt F – na boku BC tego trójkąta. Odcinek EF jest równoległy do boku AC i przechodzi przez środek S wysokości CD trójkąta ABC (zobacz rysunek).


PIC


Oblicz długość odcinka EF .

Wyznacz wszystkie wartości x , dla których liczby 3 ,5,|x | mogą być długościami boków trójkąta.

Trzy książki, których ceny tworzą ciąg geometryczny zakupiono płacąc łącznie 76 zł. Najdroższa z nich kosztowała o 4 zł mniej niż dwie pozostałe razem. Ile kosztowała każda książka?

Rozwiąż nierówność liniową  12 14 16 21 81 ⋅x + 2 7 ⋅11 > 27 ⋅2x + 2⋅9 .

Suma trzech początkowych wyrazów rosnącego ciągu geometrycznego (an) , określonego dla n ≥ 1 , jest równa 134 . Te same liczby stanowią pierwszy, drugi oraz czwarty wyraz ciągu arytmetycznego (bn) , n ≥ 1 . Wyznacz wzór ciągu (bn) .

Przekątne trapezu ABCD przecinają się w punkcie P w ten sposób, że |AP | = 12,|CP | = 3, |DP | = 2 . Długość odcinka BP jest równa
A) 18 B) 16 C) 9 D) 8

Ukryj Podobne zadania

Przekątne trapezu ABCD o podstawach AB i CD przecinają się w punkcie K w ten sposób, że |AK | = 10 , |CK | = 5 , |DK | = 7 . Długość odcinka BK jest równa
A) 7 B) 14 C) 10 D) 8

Przekątne trapezu ABCD przecinają się w punkcie P w ten sposób, że |AP | = 12,|CP | = 8, |DP | = 6 . Długość odcinka BP jest równa
A) 18 B) 16 C) 9 D) 8

Dla jakich wartości parametru m równanie x|x − 1| = m + 1 ma dwa różne rozwiązania?

W ostrosłupie prawidłowym trójkątnym wysokość ściany bocznej ma długość  √ -- 4 3 , a ściana boczna jest nachylona do płaszczyzny podstawy pod kątem 60 ∘ . Oblicz objętość ostrosłupa.

Ukryj Podobne zadania

Trójkąt równoboczny ABC jest podstawą ostrosłupa prawidłowego ABCS , w którym ściana boczna jest nachylona do płaszczyzny podstawy pod kątem 60 ∘ , a krawędź boczna ma długość  √ -- 2 7 (zobacz rysunek). Oblicz objętość tego ostrosłupa.


PIC


Trójkąt równoboczny ABC jest podstawą ostrosłupa prawidłowego ABCS , w którym ściana boczna jest nachylona do płaszczyzny podstawy pod kątem 60 ∘ , a krawędź boczna ma długość 7 (zobacz rysunek). Oblicz objętość tego ostrosłupa.


PIC


Podaj dla jakich wartości parametru k punkt przecięcia się wykresów funkcji y = − 2x+ k+ 5 i y = x − 5k + 2 należy do koła o środku s = (0,0 ) i promieniu r = 3 .

W ciągu arytmetycznym (an) dla n ≥ 1 , a1 = 1 3 oraz a 1 + a2 + a3 = 4 8 . Wtedy suma a4 + a5 + a 6 jest równa
A) 48 B) 96 C) 75 D) 58

Dwaj równorzędni przeciwnicy grają w szachy. Co jest bardziej prawdopodobne:

  • wygranie dwóch partii z trzech, czy czterech partii z sześciu rozegranych?
  • wygranie nie mniej niż dwóch partii z trzech, czy nie mniej niż czterech partii z sześciu rozegranych? (Remisów nie uwzględniamy.)

Przekątna równoległoboku dzieli go na dwa trójkąty równoramienne (zobacz rysunek).


PIC


Pole tego równoległoboku jest równe
A) 16 B) 32 C)  √ -- 32 3 D) 32√ 2-

W trójkącie ABC symetralna boku AB dzieli bok CB na odcinki długości |CE | = 4 cm i |EB | = 10 cm . Bok AB ma 16 cm długości. Wyznacz długości odcinków, na jakie wysokość CD podzieliła bok AB .

W kartezjańskim układzie współrzędnych (x ,y) środek S okręgu o promieniu √ -- 5 leży na prostej o równaniu y = x + 1 . Przez punkt A = (1,2 ) , którego odległość od punktu S jest większa od √ -- 5 , poprowadzono dwie proste styczne do tego okręgu w punktach – odpowiednio – B i C . Pole czworokąta ABSC jest równe 15. Oblicz współrzędne punktu S . Rozważ wszystkie przypadki.

W kartezjańskim układzie współrzędnych (x,y ) przedstawiono oś symetrii wykresu funkcji kwadratowej f (x) = ax 2 + bx + c . Przedstawiono również prostą y = − 3 , z którą wykres funkcji y = f(x) ma dokładnie jeden punkt wspólny, oraz jeden z punktów tego wykresu – A = (− 2,4)


PIC


Wyznacz zbiór rozwiązań nierówności f(x) ≥ 4 .

Strona 459 z 461
spinner