Krawędź boczna ostrosłupa prawidłowego czworokątnego jest nachylona do płaszczyzny podstawy pod kątem takim, że . Oblicz cosinus kąta nachylenia ściany bocznej do płaszczyzny podstawy.
/Szkoła średnia
Pierwiastkami trójmianu kwadratowego o współczynniku przy najwyższej potędze są liczby . Oblicz .
Rozwinięcie dziesiętne nieskracalnego ułamka zwykłego jest ułamkiem dziesiętnym okresowym, który można zapisać w postaci . Wiemy, że cyfra znajdująca się na 22 miejscu po przecinku tego rozwinięcia jest równa 7, cyfra znajdująca się na miejscu 26 jest równa 3, a cyfra znajdująca się na miejscu 15 jest równa 2. Licznik ułamka jest więc równy
A) 732 B) 273 C) 244 D) 723
Rozwinięcie dziesiętne nieskracalnego ułamka zwykłego jest ułamkiem dziesiętnym okresowym, który można zapisać w postaci . Wiemy, że cyfra znajdująca się na 16 miejscu po przecinku tego rozwinięcia jest równa 2, cyfra znajdująca się na miejscu 23 jest równa 3, a cyfra znajdująca się na miejscu 18 jest równa 7. Licznik ułamka jest więc równy
A) 79 B) 273 C) 237 D) 244
Rozwinięcie dziesiętne nieskracalnego ułamka zwykłego jest ułamkiem dziesiętnym okresowym, który można zapisać w postaci . Wiemy, że cyfra znajdująca się na 19 miejscu po przecinku tego rozwinięcia jest równa 3, cyfra znajdująca się na miejscu 26 jest równa 7, a cyfra znajdująca się na miejscu 15 jest równa 2. Licznik ułamka jest więc równy
A) 372 B) 273 C) 244 D) 124
Rozwiąż równanie .
Rozwiąż równanie .
Rozwiąż równanie .
Rozwiąż równanie .
Rozwiąż równanie .
Rozwiąż równanie .
Dany jest trójkąt równoboczny o boku długości 24. Punkt leży na boku , a punkt – na boku tego trójkąta. Odcinek jest równoległy do boku i przechodzi przez środek wysokości trójkąta (zobacz rysunek).
Oblicz długość odcinka .
Wyznacz wszystkie wartości , dla których liczby mogą być długościami boków trójkąta.
Trzy książki, których ceny tworzą ciąg geometryczny zakupiono płacąc łącznie 76 zł. Najdroższa z nich kosztowała o 4 zł mniej niż dwie pozostałe razem. Ile kosztowała każda książka?
Rozwiąż nierówność liniową .
Suma trzech początkowych wyrazów rosnącego ciągu geometrycznego , określonego dla , jest równa . Te same liczby stanowią pierwszy, drugi oraz czwarty wyraz ciągu arytmetycznego , . Wyznacz wzór ciągu .
Przekątne trapezu przecinają się w punkcie w ten sposób, że . Długość odcinka jest równa
A) 18 B) 16 C) 9 D) 8
Przekątne trapezu o podstawach i przecinają się w punkcie w ten sposób, że , , . Długość odcinka jest równa
A) 7 B) 14 C) 10 D) 8
Przekątne trapezu przecinają się w punkcie w ten sposób, że . Długość odcinka jest równa
A) 18 B) 16 C) 9 D) 8
Udowodnij, że dla dowolnych liczb dodatnich i prawdziwa jest nierówność
Dla jakich wartości parametru równanie ma dwa różne rozwiązania?
W ostrosłupie prawidłowym trójkątnym wysokość ściany bocznej ma długość , a ściana boczna jest nachylona do płaszczyzny podstawy pod kątem . Oblicz objętość ostrosłupa.
Trójkąt równoboczny jest podstawą ostrosłupa prawidłowego , w którym ściana boczna jest nachylona do płaszczyzny podstawy pod kątem , a krawędź boczna ma długość (zobacz rysunek). Oblicz objętość tego ostrosłupa.
Trójkąt równoboczny jest podstawą ostrosłupa prawidłowego , w którym ściana boczna jest nachylona do płaszczyzny podstawy pod kątem , a krawędź boczna ma długość 7 (zobacz rysunek). Oblicz objętość tego ostrosłupa.
Podaj dla jakich wartości parametru punkt przecięcia się wykresów funkcji i należy do koła o środku i promieniu .
W ciągu arytmetycznym dla , oraz . Wtedy suma jest równa
A) 48 B) 96 C) 75 D) 58
Dwaj równorzędni przeciwnicy grają w szachy. Co jest bardziej prawdopodobne:
- wygranie dwóch partii z trzech, czy czterech partii z sześciu rozegranych?
- wygranie nie mniej niż dwóch partii z trzech, czy nie mniej niż czterech partii z sześciu rozegranych? (Remisów nie uwzględniamy.)
Przekątna równoległoboku dzieli go na dwa trójkąty równoramienne (zobacz rysunek).
Pole tego równoległoboku jest równe
A) 16 B) 32 C) D)
W trójkącie symetralna boku dzieli bok na odcinki długości i . Bok ma 16 cm długości. Wyznacz długości odcinków, na jakie wysokość podzieliła bok .
W kartezjańskim układzie współrzędnych środek okręgu o promieniu leży na prostej o równaniu . Przez punkt , którego odległość od punktu jest większa od , poprowadzono dwie proste styczne do tego okręgu w punktach – odpowiednio – i . Pole czworokąta jest równe 15. Oblicz współrzędne punktu . Rozważ wszystkie przypadki.
W kartezjańskim układzie współrzędnych przedstawiono oś symetrii wykresu funkcji kwadratowej . Przedstawiono również prostą , z którą wykres funkcji ma dokładnie jeden punkt wspólny, oraz jeden z punktów tego wykresu –
Wyznacz zbiór rozwiązań nierówności .