Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Równania/Wielomianowe/Stopnia 3

Wyszukiwanie zadań

Wielomian  3 x − 9x + 4 = 0 ma 3 pierwiastki rzeczywiste.

  • Oblicz sumę odwrotności tych pierwiastków.
  • Ustal, ile jest pierwiastków dodatnich.
  • Oblicz odwrotność sumy kwadratów pierwiastków.
  • Oblicz sumę kwadratów odwrotności tych pierwiastków.
Ukryj Podobne zadania
Ukryj Podobne zadania

Dla jakich wartości parametru m równanie  3 2 mx − (2m + 1)x + (2− 3m )x = 0 ma rozwiązania, których suma jest dodatnia?

Ukryj Podobne zadania

Wyznacz wszystkie wartości parametru m , dla których równanie

 3 x + (m − 1)x − m = 0

ma dokładnie dwa pierwiastki rzeczywiste. Dla otrzymanych wartości m wyznacz te pierwiastki.

Wielomian  3 2 W (x) = x + mx + nx − 10 ma trzy pierwiastki x1,x2,x 3 , przy czym x 2 = − 2x1 i x3 = 5x 1 . Wyznacz m i n .

Ukryj Podobne zadania

Wielomian  3 2 W (x) = x + ax + bx+ 64 ma trzy pierwiastki: x1,x2,x3 , przy czym x 2 = − 2x1 i x3 = 4x 1 . Wyznacz a i b .

Równanie  3 2 x + mx + nx + 64 = 0 ma trzy pierwiastki będące kolejnymi wyrazami ciągu geometrycznego o ilorazie − 2 . Wyznacz m i n .

Ukryj Podobne zadania

Liczba 3 jest pierwiastkiem wielomianu  3 2 W (x) = x − 4x − mx + 3 6 . Wyznacz parametr m i pozostałe pierwiastki tego wielomianu.

Dany jest wielomian  3 2 W (x) = x + x − 5x + 3 .

  • Oblicz resztę z dzielenia tego wielomianu przez dwumian (x + 1) .
  • Oblicz miejsca zerowe tego wielomianu.
  • Rozwiąż nierówność W (x) > (x − 1)2 .

Wielomian  3 2 W (x) = (m − 4)x − (m + 6)x − (m − 1)x+ m + 3 jest podzielny przez dwumian x + 1 . Dla jakich wartości parametru m wielomian W (x) ma dokładnie dwa pierwiastki?

Wiedząc, że suma kwadratów pierwiastków równania

 3 2 mx + 6mx + (8m − 5 )x − 10 = 0

jest równa 30, wyznacz m .

Ukryj Podobne zadania

Sprawdź dla jakiego m ∈ R pierwiastki wielomianu  3 2 W (x ) = x − (m + 1)x + (m − 3)x + 3 tworzą ciąg arytmetyczny?

Wyznacz wszystkie wartości parametru m , dla których jedynym rozwiązaniem rzeczywistym równania x3 + m 3x2 − m 2x− 1 = 0 jest liczba 1.

Dany jest wielomian  3 2 W (x) = x + 2x − 9x − 18 .

  • Wyznacz pierwiastki tego wielomianu.
  • Sprawdź, czy wielomiany W (x ) i P(x ) = (x+ 2)(x2 − 2x + 4) + (x + 2)(2x − 1 3) są równe.
  • Uzasadnij, że jeśli  √ --- x > 10 , to  3 2 x + 2x − 9x − 18 > 0 .

Pierwiastkiem wielomianu  3 W (x ) = 2x + mx − 5 jest liczba -2. Wyznacz parametr m .

Ukryj Podobne zadania

Pierwiastkiem wielomianu  3 2 W (x ) = x − mx − 3x+ m jest liczba − 2 . Wyznacz parametr m .

Dane są liczby wymierne a ⁄= 0, b i k > 0 takie, że liczby  √ -- x1 = 1 − k i  √ -- x2 = 1+ k są pierwiastkami równania ax 3 + bx 2 + cx+ d = 0 . Wykaż, że c i d są liczbami wymiernymi.

Dany jest wielomian  3 2 2 2 W (x) = x − a x + x − a , gdzie |a| ⁄= 1 .

  • Oblicz sumę pierwiastków tego wielomianu.
  • Wyznacz wartość parametru a , dla której suma kwadratów pierwiastków wielomianu W (x) jest możliwie najmniejsza.

Dany jest wielomian  3 2 Q(x ) = 2x − 3x − 3x + d .

  • Liczba 1 jest pierwiastkiem tego wielomianu. Oblicz d .
  • Dla d = 2 przedstaw wielomian Q w postaci iloczynu wielomianów stopnia pierwszego.
Strona 1 z 4
spinner