Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Geometria analityczna

Wyszukiwanie zadań

Punkty P = (− 3,− 9) , Q = (8,4) i R = (− 12,− 4) są środkami odpowiednio boków AB ,BC i DA równoległoboku ABCD . Wyznacz współrzędne wierzchołka A tego równoległoboku.

Punkt A jest punktem wspólnym prostych prostopadłych k i l o równaniach y = ax+ b oraz y = cx + d . Wykaż, że jeżeli b > 0 i d > 0 , to druga współrzędna punktu A jest liczbą dodatnią.

Wierzchołek kąta znajduje się w punkcie W = (0,0) , jedno z jego ramion leży na prostej y = 43x , a drugie ramię przechodzi przez punkt A = (4;− 3) . Punkt P = (7,1) należy do wnętrza tego kąta. Sprawdź rachunkowo, czy punkt P leży na dwusiecznej tego kąta.

Punkty A = (− 3,2) i C = (9,6) są przeciwległymi wierzchołkami rombu o polu 40. Wyznacz współrzędne pozostałych wierzchołków rombu.

Ukryj Podobne zadania

W rombie ABCD , którego pole jest równe 10 dane są przeciwległe wierzchołki A (0,4) i C (4,2) . Wyznacz współrzędne pozostałych wierzchołków rombu.

Punkty A = (0,0) i C = (8,4) są wierzchołkami rombu ABCD , którego jeden z boków zawiera się w prostej y = 4 . Wyznacz współrzędne pozostałych wierzchołków rombu.

Wyznacz odległość między prostymi y = 2x + 5 i y = 2x − 5 .

Dane są punkty A = (2,3), B = (5,0), C = (0,− 5) .

  • Uzasadnij, że proste AB i BC są prostopadłe.
  • Wyznacz współrzędne takiego punktu D , dla którego czworokąt ABCD jest prostokątem.
  • Oblicz pole prostokąta ABCD .

Dany jest trójkąt ABC , gdzie A = (− 5,− 2),B = (3 ,−1 ),C = (− 1,6) .

  • Wyznacz równanie prostej zawierającej bok AC .
  • Oblicz długość środkowej AD .
  • Wyznacz równanie prostej zawierającej wysokość poprowadzoną z wierzchołka C .
  • Oblicz pole tego trójkąta.
Ukryj Podobne zadania

Dany jest trójkąt ABC , gdzie A = (− 6,− 2),B = (2 ,−1 ),C = (− 2,6) .

  • Wyznacz równanie prostej zawierającej bok AC .
  • Oblicz długość środkowej AD .
  • Wyznacz równanie prostej zawierającej wysokość poprowadzoną z wierzchołka C .
  • Oblicz pole tego trójkąta.

Przedłużenia ramion AD i BC trapezu równoramiennego ABCD przecinają się w punkcie S = (− 14,15 ) . Wyznacz współrzędne wierzchołków B i D tego trapezu, jeżeli A = (− 8,− 15) i C = (− 9,14) .

Dwa boki trójkąta prostokątnego ABC są zawarte w prostych o równaniach y = 2x+ 1 oraz y = 14x − 34 . Wyznacz współrzędne wierzchołków trójkąta ABC jeżeli wiadomo, że jego trzeci bok jest zawarty w prostej przechodzącej przez punkt K = (2,− 2) . Rozważ wszystkie możliwości.

Napisz równanie okręgu przechodzącego przez punkt P(9,9) i stycznego do osi Ox w punkcie Q(6 ,0) .

Ukryj Podobne zadania

Punkt B = (− 1,9) należy do okręgu stycznego do osi Ox w punkcie A = (2,0) . Wyznacz równanie tego okręgu.

Napisz równanie okręgu przechodzącego przez punkt A = (8,1) i stycznego do osi Oy w punkcie B = (0 ,−3 ) .

Do okręgu należy punkt A (6;9 ) , oraz jest on styczny do osi Oy w punkcie B (0;3) . Podaj równanie tego okręgu.

Do okręgu należy punkt A (7;9 ) , oraz jest on styczny do osi Ox w punkcie B (4;0) . Podaj równanie tego okręgu.

Sprawdź czy punkt P = (− 5,5) jest środkiem okręgu wpisanego w trójkąt o wierzchołkach A = (−5 ,−5 ), B = (5,15), C = (− 11 ,7) .

Na okręgu o równaniu  2 2 x + y = 8 opisano romb o polu 100 3 . Dłuższa przekątna rombu zawiera się w prostej o równaniu y = x . Oblicz współrzędne wierzchołków tego rombu.

Podstawa trójkąta równoramiennego zawiera się w prostej y = −x − 5 , a jedno z jego ramion w prostej y = 3x − 5 . Wyznacz równanie drugiego ramienia tego trójkąta, jeżeli jednym z jego wierzchołków jest punkt o współrzędnych (2,1) .

Znajdź taki punkt P leżący na prostej l o równaniu x = 0 , z którego odcinek AB , gdzie A = (4,0) , B = (28,0) , widać pod możliwie największym kątem. Wyznacz ten kąt.

Punkty A i B są punktami wspólnymi prostej o równaniu x − 2y + 6 = 0 oraz okręgu o środku S = (1,1) . Długość odcinka AB jest równa  √ -- 4 5 . Wyznacz współrzędne punktów A i B .

Prosta o równaniu 5x + 4y− 10 = 0 przecina oś Ox układu współrzędnych w punkcie A oraz oś Oy w punkcie B . Oblicz współrzędne wszystkich punktów C leżących na osi Ox i takich, że trójkąt ABC ma pole równe 35 .

Mając dane współrzędne punktu C = (− 5,0) kwadratu ABCD oraz współrzędne punktu przecięcia się przekątnych S = (1,2) , wyznacz współrzędne pozostałych wierzchołków kwadratu ABCD .

Na bokach AB i AC trójkąta ABC wybrano punkty E i D w ten sposób, że |AE | = 2|EB | i |AD | = |DC | . Punkt M jest punktem wspólnym odcinków CE i BD .


PIC


  • Przedstaw każdy z wektorów −→ − → BC ,BD oraz −→ CE w postaci  → p ⋅b + q ⋅→c , gdzie → −→ → b = AB ,→c = AC oraz p,q ∈ R .
  • Korzystając z równości −→ −→ −→ BC + CM = BM oblicz w jakim stosunku punkt M dzieli odcinki BD i CE .

Wyznacz równanie prostej przechodzącej przez punkty A i B jeżeli A = (− 2,− 10) i B = (1,− 1) .

Ukryj Podobne zadania

Wyznacz równanie prostej przechodzącej przez punkty A i B jeżeli A = (1,4) i B = (− 3,− 2) .

Strona 12 z 27
spinner