Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Czworokąt/Dowolny

Wyszukiwanie zadań

Uzasadnij, że środki boków dowolnego czworokąta są wierzchołkami równoległoboku. Jaka figurę otrzymamy, łącząc kolejno środki boków: a) rombu, b) prostokąta, c) kwadratu?

Ukryj Podobne zadania

Uzasadnij, że środki boków dowolnego czworokąta są wierzchołkami równoległoboku.

Trapez równoramienny ABCD nie jest równoległobokiem. Przekątna AC tego trapezu tworzy z podstawą AB kąt o mierze 60∘ . Wykaż, że trapez ABCD nie może być opisany na okręgu.

Czworokąt ABCD jest wpisany w okrąg oraz pola trójkątów ABC i ADC są równe. Wykaż, że

|AB |2 + |BC |2 + |CD |2 + |DA |2 = 2|AC |2.

W czworokąt ABCD , w którym  √ -- |AD | = 5 3 i |CD | = 6 , można wpisać okrąg. Przekątna BD tworzy z bokiem AB czworokąta kąt o mierze 60 ∘ , natomiast z bokiem AD tworzy kąt, którego sinus jest równy 34 . Wyznacz długości boków AB i BC oraz długość przekątnej BD tego czworokąta.

Ukryj Podobne zadania

Przekątna AC czworokąta ABCD tworzy z bokiem BC kąt  ∘ 60 , a z bokiem AB kąt β taki, że sin β = 34 . Promień okręgu opisanego na trójkącie ABC ma długość 5, a bok AD długość |AD | = 7 . Wiedząc, że w czworokąt ABCD można wpisać okrąg oblicz długości pozostałych boków czworokąta oraz długość przekątnej AC .

Na okręgu jest opisany czworokąt ABCD . Bok AB tego czworokąta jest trzy razy krótszy od przekątnej BD , a bok AD ma długość 10. Ponadto spełnione są następujące warunki:

 --- cos(∡ADB ) = 19-, |∡BCD | = 90 ∘, oraz |AB | > √ 1 5. 20

Oblicz długość boku BC tego czworokąta.

W czworokąt ABCD , w którym |AD | = 4 i |CD | = 6 , można wpisać okrąg. Przekątna BD tworzy z bokiem AB czworokąta kąt o mierze 45 ∘ , natomiast z bokiem AD tworzy kąt, którego sinus jest równy 14 . Wyznacz długości boków AB i BC oraz długość przekątnej BD tego czworokąta.

Na okręgu jest opisany czworokąt ABCD . Bok AD tego czworokąta jest dwa razy dłuższy od boku AB , a przekątna BD ma długość równą 6. Ponadto spełnione są następujące warunki:

 √ --- cos(∡ADB ) = 7, |∡BCD | = 90∘, oraz |AB | > 15. 8

Oblicz długość boku BC tego czworokąta.

Na bokach AB ,BC ,CD i DA czworokąta ABCD wybrano punkty K ,L,M i N takie, że

AK-- = BL- = CM---= DN-- = k,gdzie k ∈ (0,+ ∞ ). KB LC MD NA

Oblicz stosunek pola czworokąta KLMN do pola czworokąta ABCD .

Czworokąt ABCD jest wpisany w okrąg o promieniu  √ -- 4 3 (patrz rysunek). Przekątna BD czworokąta ma długość 12. Iloczyn sinusów wszystkich kątów wewnętrznych czworokąta jest równy 136 . Wiedząc, że |∡A | < |∡C | < |∡D | , oblicz miary kątów czworokąta ABCD .


PIC


Ukryj Podobne zadania

Czworokąt ABCD jest wpisany w okrąg o promieniu  √ -- R = 5 2 . Przekątna BD tego czworokąta ma długość 10. Kąty wewnętrzne BAD i ADC czworokąta ABCD są ostre, a iloczyn sinusów wszystkich jego kątów wewnętrznych jest równy 3 8 . Oblicz miary kątów wewnętrznych tego czworokąta.

W czworokącie wypukłym ABCD kąty przy wierzchołkach B i D są proste (zobacz rysunek).


PIC


Oblicz sinus kąta przy wierzchołku C jeżeli |AC | = 1,3|BD | .

Dwa przeciwległe boki czworokąta wpisanego w okrąg mają równe długości. Wykaż, że czworokąt ten jest trapezem.

Dany jest czworokąt wypukły ABCD . Przekątne AC oraz BD tego czworokąta przecinają się w punkcie S . Wykaż, że jeżeli |AS|-= |BS|- |DS | |CS| , to na czworokącie ABCD można opisać okrąg.

Na czworokącie ABCD można opisać okrąg. Długości boków tego czworokąta są równe |BC | = 12 , |CD | = 6 , |AD | = 1 0 , a kąt ABC ma miarę 60∘ . Oblicz długość promienia okręgu opisanego na czworokącie ABCD .

Oblicz pole czworokąta wypukłego ABCD , w którym kąty wewnętrzne mają odpowiednio miary: ∡A = 90 ∘ , ∡B = 75∘ , ∡C = 6 0∘ , ∡D = 1 35∘ , a boki AB i AD mają długość 3 cm. Sporządź rysunek pomocniczy.

Przekątne czworokąta wypukłego ABCD dzielą go na cztery trójkąty. Wykaż, że jeżeli promienie okręgów opisanych na tych czterech trójkątach są równe, to w czworokąt ABCD można wpisać okrąg.

W czworokącie ABCD o obwodzie 24 dane są  ∘ |∡ABC | = 120 oraz  √ -- |BD | = 4 3 . Wiedząc, że środek przekątnej BD jest środkiem symetrii tego czworokąta oblicz jego pole.

Przez każde dwa sąsiednie wierzchołki czworokąta ABCD wpisanego w okrąg poprowadzono okrąg (zobacz rysunek).


PIC


Wykaż, że punkty P ,Q,R ,S , w których przecinają się te okręgi, leżą na jednym okręgu.

Czworokąt ABCD , w którym |AD | = 18 i |CD | = 26 , jest opisany na okręgu. Kąt ABC tego czworokąta jest rozwarty, a promień okręgu opisanego na trójkącie ABC jest równy 12,5. Obwód czworokąta ABCD jest równy 66. Oblicz długość przekątnej AC tego czworokąta.

Dany jest czworokąt ABCD , którego kolejne boki mają długości 4,5,7,8. Kat między najkrótszymi bokami ma miarę α , taką że cos α = − 196 . Sprawdź czy na tym czworokącie można opisać okrąg.

Dany jest czworokąt ABCD . Niech S będzie punktem przecięcia jego przekątnych. Udowodnij, że czworokąt ABCD można wpisać w okrąg wtedy i tylko wtedy, gdy |AS|= |BS| |DS| |CS| .

Obwód czworokąta wypukłego ABCD jest równy 50 cm. Obwód trójkąta ABD jest równy 46 cm, a obwód trójkąta BCD jest równy 36 cm. Oblicz długość przekątnej BD .

Przedłużenia przeciwległych boków czworokąta wpisanego w okrąg tworzą kąty ostre o miarach 20 ∘ i 40∘ . Oblicz miary kątów czworokąta.

Strona 3 z 4
spinner