Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Rozwiązaniem układu równań { y − x − 1 = 0 x + y − 3 = 0 jest para
A) x = 1 i y = 2 B) x = 1 i y = − 2 C) x = 2 i y = 3 D) x = 3 i y = 2

*Ukryj

Rozwiązaniem układu równań { 2x + 5y = − 1 3x − 5y = 11 jest
A) { x = 2 y = 1 B) { x = 2 y = − 1 C) { x = 1 y = 2 D) { x = 1 y = − 2

Rozwiązaniem układu równań { 2y − x − 3 = 0 x + 2y − 1 = 0 jest para
A) x = − 1 i y = 1 B) x = 1 i y = 1 C) x = 1 i y = − 1 D) x = − 1 i y = − 1

Rozwiązaniem układu równań { 5x + 3y = 3 8x − 6y = 48 jest para liczb
A) x = −3 i y = 4 B) x = − 3 i y = 6 C) x = 3 i y = − 4 D) x = 9 i y = 4

Układ równań { x+ y− 6 = 0 x− y+ 4 = 0 opisuje w układzie współrzędnych na płaszczyźnie punkt
A) (1,5) B) (− 1,5 ) C) (1,− 5) D) (− 1,− 5)

Rozwiązaniem układu równań { 21x − 14y = − 28 6y + 9x = 48 jest para liczb
A) x = −3 i y = 5 B) x = − 3 i y = 6 C) x = 5 i y = 2 D) x = 2 i y = 5

Rozwiązaniem układu równań { x + 3y = 5 2x − y = 3 jest
A) { x = 2 y = 1 B) { x = 2 y = − 1 C) { x = 1 y = 2 D) { x = 1 y = − 2

Układ równań { 6x = 10y + 1 8 15y− 9x + 27 = 0
A) ma dokładnie jedno rozwiązanie. B) ma dwa rozwiązania.
C) ma nieskończenie wiele rozwiązań. D) nie ma rozwiązań.

*Ukryj

Układ równań { 3 y− 8x = − 3 14x − 23y = 3
A) nie ma rozwiązań. B) ma dokładnie jedno rozwiązanie.
C) ma dokładnie dwa rozwiązania. D) ma nieskończenie wiele rozwiązań.

Układ równań { 2x− 3y = 5 −4x + 6y = − 10.
A) nie ma rozwiązań B) ma dokładnie jedno rozwiązanie
C) ma dokładnie dwa rozwiązania D) ma nieskończenie wiele rozwiązań

Układ równań { 2x− 3y = − 5 −4x + 6y = − 10.
A) nie ma rozwiązań B) ma dokładnie jedno rozwiązanie
C) ma dokładnie dwa rozwiązania D) ma nieskończenie wiele rozwiązań

Układ równań { 1 2 4x − 3y = 2 y− 38x = 3
A) nie ma rozwiązań. B) ma dokładnie jedno rozwiązanie.
C) ma dokładnie dwa rozwiązania. D) ma nieskończenie wiele rozwiązań.

Układ równań { 1 2 4x − 3y = 2 y− 38x = − 3
A) nie ma rozwiązań. B) ma dokładnie jedno rozwiązanie.
C) ma dokładnie dwa rozwiązania. D) ma nieskończenie wiele rozwiązań.

Pary liczb (x,y) = (2 ,− 1 ) i (x ,y) = (5,− 2) należą do zbioru rozwiązań układu równań
A) { x + 3y = − 1 2x + 3y = 1 B) { 2x + y = 3 4x + 2y = 6 C) { 2x + 6y = − 2 3x + 9y = − 3 D) { 2x+ 3y = 1 2x+ 3y = 4

*Ukryj

Pary liczb (x,y) = (2 ,− 1 ) i (x ,y) = (− 1,5) należą do zbioru rozwiązań układu równań
A) { x + 3y = − 1 2x + 3y = 1 B) { 2x + 3y = 1 2x + 3y = 4 C) { 2x + 6y = − 2 3x + 9y = − 3 D) { 2x+ y = 3 4x+ 2y = 6

Układ liczb  ( 1 1 ) (x ,y,z) = 2,− 3,− 1 jest rozwiązaniem układu równań

( 2 |{ a x − 3y + az = 1 −ax + (a2 + 2)y − 2z = − 1 |( 3 6x − (a + 1)y + 5z = 1,

dla
A) a = 2 B) a = 53 C) a = − 4 3 D) a = −2

Na rysunku przedstawiono geometryczną interpretację jednego z niżej zapisanych układów równań.


PIC


Wskaż ten układ
A) { y = x+ 1 y = − 2x + 4 B) { y = x − 1 y = 2x + 4 C) { y = x− 1 y = − 2x+ 4 D) { y = x + 1 y = 2x + 4

*Ukryj

Na rysunku jest przedstawiona graficzna ilustracja układu dwóch równań stopnia pierwszego z dwiema niewiadomymi x i y .


PIC


Wskaż ten układ
A) { y = − 2x + 8 3 13 y = − 2x + 2 B) { y = 2x − 4 1 7 y = − 2x+ 2 C) { y = x− 1 1 1 y = 2x + 2 D) { y = 3x − 7 2 y = − 3x + 4

Na rysunku jest przedstawiona graficzna ilustracja układu dwóch równań stopnia pierwszego z dwiema niewiadomymi x i y .


PIC


Wskaż ten układ
A) { y = x− 1 1 1 y = 2x + 2 B) { y = 2x − 4 1 7 y = − 2x + 2 C) { y = 3x − 7 2 y = − 3x + 4 D) { y = − 2x + 8 3 13 y = − 2x + 2

Na rysunku przedstawiono geometryczną interpretację jednego z niżej zapisanych układów równań.


PIC


Wskaż ten układ
A) { y = −x − 1 y = − 2x + 4 B) { y = −x + 1 y = 2x + 4 C) { y = −x − 1 y = 2x + 4 D) { y = −x + 1 y = − 2x + 4

Układ równań { y = −ax + 2a y = b3x − 2 nie ma rozwiązania dla
A) a = − 1 i b = − 3 B) a = 1 i b = 3 C) a = 1 i b = − 3 D) a = − 1 i b = 3

*Ukryj

Układ równań { y = −ax − 2a y = bx3 − 2 nie ma rozwiązania dla
A) a = − 1 i b = − 3 B) a = 1 i b = −3 C) a = 1 i b = 3 D) a = − 1 i b = 3

Układ równań { 3x+ py = 2 qx+ 5y = 4 z niewiadomymi x i y ma nieskończenie wiele rozwiązań. Zatem liczba p + q jest równa
A) 6 B) 17 2 C) 13 2 D) 15

*Ukryj

Układ równań { 2x+ py = 3 qx+ 3y = 6 z niewiadomymi x i y ma nieskończenie wiele rozwiązań. Zatem liczba p + q jest równa
A) 6 B) 1 C) 13 2 D) 112

Liczby rzeczywiste a,b,c spełniają warunki: a + b = 3 , b+ c = 4 i c+ a = 5 . Wtedy suma a+ b+ c jest równa
A) 20 B) 6 C) 4 D) 1

*Ukryj

Liczby rzeczywiste a,b,c spełniają warunki: a + b = − 4 , b+ c = 7 i c + a = 1 . Wtedy suma a + b + c jest równa
A) − 10 B) 8 C) 4 D) 2

Jeśli x + y = 2 i  2 2 x + y = 8 , to xy równa się
A) − 4 B) 2 C) 4 D) − 2

Na rysunku jest przedstawiona graficzna ilustracja układu trzech równań stopnia pierwszego z dwiema niewiadomymi x i y .


PIC


Wskaż ten układ
A) ( |{ y = − 2x + 8 y = − 3x + 13 |( 2 2 y = 3x + 2 B) ( |{ y = 2x + 5 y = − 2x − 17 |( 3 3 y = − 2x − 11 C) (| y = x − 1 { y = − 12x − 12 |( y = − 3x − 5 D) ( |{ y = 3x + 7 y = − 2x − 4 |( 2 3 y = 3x − 2

Układem sprzecznym jest układ
A) { x − 2y = 3 3x − 6y = 9 B) { −x + 2y = 2 3x − 6y = 9 C) { x − y = 4 3x − 6y = 9 D) { x+ 2y = 3 3x− 6y = 9

*Ukryj

Wskaż układ, który ma nieskończenie wiele rozwiązań.
A) { x − y = 4 3x − 6y = 9 B) { −x + 2y = 2 3x − 6y = 9 C) { x − 2y = 3 3x − 6y = 9 D) { x+ 2y = 3 3x− 6y = 9

Układem sprzecznym jest układ
A) { x − 5y = 3 2x − 10y = 6 B) { −x − 5y = 2 2x − 1 0y = 6 C) { x − y = 4 2x − 1 0y = 6 D) { x− 5y = 2 2x− 10y = 6

Układem sprzecznym jest układ
A) { 1 5x− 21y = 9 5x − 7y = 3 B) { x + 2y = 2 5x − 7y = 3 C) { 10x − 14y = 9 5x − 7y = 3 D) { x+ 2y = 3 5x− 7y = 3

Układem sprzecznym jest układ
A) { x − 3y = 3 2x − 6y = 6 B) { x − y = 4 2x − 6y = 6 C) { −x + 3y = 2 2x − 6y = 6 D) { x+ 3y = 3 2x− 6y = 6

Wybierz równanie, które wraz z równaniem 3x − 2y = 5 tworzy nieoznaczony układ równań.
A) 2y − 2y = 5 B) 6x − 4y = 5 C) 4x − 6y = 10 D) 6x − 4y = 1 0

*Ukryj

Wybierz równanie, które wraz z równaniem 2x− 3y = − 2 tworzy nieoznaczony układ równań.
A) 4x − 6y = − 6 B) 6y − 4x = − 4 C) 9y − 4x = 6 D) 6x − 9y = − 6

Układ równań { 2 2 x + y = 0 x+ 3y = 1 opisuje w układzie współrzędnych na płaszczyźnie
A) zbiór pusty. B) dokładnie jeden punkt.
C) dokładnie dwa różne punkty. D) zbiór nieskończony.

Jeśli  2 2 x + y = 72 i xy = 4 1 , to kwadrat sumy liczb x,y jest równy
A) 6865 B) 154 C) 113 D) 5184

*Ukryj

Jeśli  2 2 x + y = 59 i xy = 3 2 , to kwadrat sumy liczb x,y jest równy
A) 3545 B) 91 C) 123 D) 3481

Jeśli  2 2 x + y = 63 i xy = 5 2 , to kwadrat sumy liczb x,y jest równy
A) 167 B) 3969 C) 115 D) 4073

Rozwiązaniem układu równań { x + y = 1 x − y = b z niewiadomymi x i y jest para liczb dodatnich. Wynika stąd, że
A) b < − 1 B) b = − 1 C) − 1 < b < 1 D) b ≥ 1

*Ukryj

Rozwiązaniem układu równań { x + y = −1 x − y = b z niewiadomymi x i y jest para liczb ujemnych. Wynika stąd, że
A) b ≥ 1 B) b = − 1 C) − 1 < b < 1 D) b < −1

Liczby rzeczywiste a,b spełniają warunki:  3 3 a + b = 19 ,  2 2 a b+ ab = − 6 . Wtedy suma a+ b jest równa
A) 37 B) 13 C) 1 D) 25

*Ukryj

Jeżeli k + m = 2 i  3 3 k + m = 5 , to wartość iloczynu km jest równa
A) 23 B) 12 C) 35 D) 3 4

Ile rozwiązań ma układ równań { 2 y = x − 2 x2 + (y + 1)2 = 1 ?
A) 0 B) 1 C) 2 D) 3

Ile rozwiązań ma układ równań { y − 3 = 0 y = |(x − 1)2 − 4|
A) 1 B) 2 C) 3 D) 4

Ile rozwiązań ma układ równań { −x + y − 1 = 0 (x − 1)2 + y2 = 2 ?
A) 0 B) 1 C) 2 D) 3

Para liczb  1 x = 2 i  1 y = − 3 jest rozwiązaniem układu równań ( |{ 2a3x + 6ay = 1 2 | 4x + 3ay = 3a ( 6a3x + 12y = 7a3 dla
A) a = 2 B) a = − 2 C) a = − 1 D)  1 a = 2

Strona 1 z 3>>>>