Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Przekrój osiowy stożka jest trójkątem równoramiennym o stosunku ramienia do podstawy 3:2. Tworząca stożka tworzy z podstawą kąt α , taki, że
A) cosα = 1 3 B) sin α = 2 3 C)  2 co sα = 3 D)  1 sin α = 3

*Ukryj

Przekrój osiowy stożka jest trójkątem równoramiennym o stosunku ramienia do podstawy 5:2. Tworząca stożka tworzy z podstawą kąt α , taki, że
A) cosα = 2 5 B) sin α = 2 5 C)  1 co sα = 5 D)  1 sin α = 5

Przekrój osiowy stożka jest trójkątem równoramiennym o stosunku ramienia do podstawy 8:6. Tworząca stożka tworzy z podstawą kąt α , taki, że
A) sin α = 3 8 B) cos α = 3 8 C)  3 co sα = 4 D)  3 sin α = 4

Tworząca stożka o promieniu podstawy 3 ma długość 6 (zobacz rysunek).


PIC


Kąt α rozwarcia tego stożka jest równy
A) 30∘ B) 4 5∘ C) 60∘ D) 90∘

*Ukryj

Tworząca stożka o wysokości 3 ma długość 6 (zobacz rysunek).


PIC


Kąt α rozwarcia tego stożka jest równy
A) 30∘ B) 4 5∘ C) 60∘ D) 120∘

Długość tworzącej stożka jest równa 6, a obwód jego podstawy wynosi  √ -- 6 3π . Kąt rozwarcia tego stożka ma miarę
A) 30∘ B) 6 0∘ C) 90∘ D) 120∘

*Ukryj

Objętość stożka o promieniu podstawy równym r jest równa π√3r3- 9 . Miara kąta rozwarcia tego stożka jest równa
A) 30∘ B) 6 0∘ C) 90∘ D) 120∘

Średnica podstawy stożka ma długość √ -- 3 , a jego tworząca ma długość 1. Tangens kąta rozwarcia tego stożka jest równy
A)  √ -- − 3 B) √ -- 3 C)  √-3 − 3 D) √3- 3

Przekrój osiowy stożka jest trójkątem równoramiennym o podstawie 8 i ramieniu 10. Powierzchnia boczna stożka jest wycinkiem koła o kącie środkowym
A) 120 ∘ B) 135∘ C)  ∘ 18 0 D)  ∘ 14 4

Tworząca stożka jest nachylona do płaszczyzny podstawy pod kątem  ∘ 35 . Miara kąta rozwarcia stożka jest równa
A) 110 ∘ B) 55∘ C) 12 0∘ D) 13 0∘

Pole powierzchni bocznej stożka jest dwa razy większe od jego pola podstawy. Tworząca tego stożka jest nachylona do płaszczyzny podstawy pod kątem
A) 30∘ B) 4 5∘ C) 60∘ D)  ∘ 90

Stożek o promieniu podstawy r i kula o tym samym promieniu mają równe objętości. Tangens kąta między tworzącą i płaszczyzną podstawy tego stożka jest równy
A) 4 3 B) 12 C) √ 17- D) 4

*Ukryj

Stożek o średnicy podstawy d i kula o promieniu d mają równe objętości. Tangens kąta między tworzącą i płaszczyzną podstawy tego stożka jest równy
A) 32 B) 1 8 C)  √ --- 5 41 D) 4

Jeśli średnica podstawy stożka jest równa 12, a wysokość stożka 8, to kąt α między wysokością stożka, a jego tworzącą jest taki, że
A) tg α = 32 B) tg α = 23 C) tg α = 3 4 D) tg α = 4 3

*Ukryj

Jeśli średnica podstawy stożka jest równa 16, a wysokość stożka 6, to kąt α między wysokością stożka, a jego tworzącą jest taki, że
A) tg α = 32 B) tg α = 23 C) tg α = 3 4 D) tg α = 4 3

Jeśli średnica podstawy stożka jest równa 18, a wysokość stożka 12, to kąt α między wysokością stożka, a jego tworzącą jest taki, że
A) tg α = 34 B) tg α = 23 C) tg α = 3 2 D) tg α = 4 3

Pole podstawy stożka jest trzy razy mniejsze od jego pola powierzchni bocznej. Wówczas kąt α rozwarcia stożka spełnia warunek
A) 38∘ < α < 40∘ B) 36 ∘ < α < 38 ∘ C) 19∘ < α < 20∘ D) 18∘ < α < 19∘