Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria/Ostrosłup/Prawidłowy czworokątny/Kąty

Wyszukiwanie zadań

W ostrosłupie prawidłowym czworokątnym cosinus kąta między krawędziami bocznymi, które nie są sąsiednie jest równy 47 , a pole koła opisanego na podstawie ostrosłupa jest równe 6π . Oblicz cosinus kąta α między sąsiednimi ścianami bocznymi ostrosłupa.

Ukryj Podobne zadania

W ostrosłupie prawidłowym czworokątnym cosinus kąta między krawędziami bocznymi, które nie są sąsiednie jest równy 47 , a pole koła opisanego na podstawie ostrosłupa jest równe 6π . Oblicz cosinus kąta α między sąsiednimi krawędziami bocznymi ostrosłupa.

W ostrosłupie prawidłowym czworokątnym krawędź boczna tworzy z krawędzią podstawy kąta α . Wyznacz cosinus kąta między sąsiednimi ścianami bocznymi.

Tangens kąta nachylenia ściany bocznej do płaszczyzny podstawy ostrosłupa prawidłowego czworokątnego jest równy 23 . Oblicz tangens nachylenia krawędzi bocznej do płaszczyzny podstawy tego ostrosłupa.

W ostrosłupie prawidłowym czworokątnym ABCDS o podstawie ABCD i wierzchołku S trójkąt ACS jest równoboczny i ma bok długości 8. Oblicz sinus kąta nachylenia ściany bocznej do płaszczyzny podstawy tego ostrosłupa (zobacz rysunek).


PIC


Kąt α jest kątem nachylenia krawędzi bocznej ostrosłupa prawidłowego czworokątnego do płaszczyzny podstawy (zobacz rysunek). Oblicz stosunek pola powierzchni całkowitej tego ostrosłupa do pola jego podstawy, jeżeli  √5- cosα = 5 .


PIC


Dany jest ostrosłup prawidłowy czworokątny o wysokości H = 16 . Suma długości wszystkich jego krawędzi jest równa  √ -- 128 2 . Oblicz cosinus kąta nachylenia ściany bocznej do płaszczyzny podstawy tego ostrosłupa.

Wszystkie krawędzie ostrosłupa prawidłowego czworokątnego mają tę samą długość. Oblicz kąt nachylenia krawędzi bocznej ostrosłupa do płaszczyzny podstawy.

Dany jest sześcian ABCDEF GH o krawędzi długości 9. Wierzchołki podstawy ABCD sześcianu połączono odcinkami z punktem W , który jest punktem przecięcia przekątnych podstawy EF GH . Otrzymano w ten sposób ostrosłup prawidłowy czworokątny ABCDW .


PIC


Oblicz cosinus kąta nachylenia krawędzi bocznej ostrosłupa do płaszczyzny podstawy.

Ukryj Podobne zadania

Dany jest graniastosłup prawidłowy czworokątny ABCDEF GH o krawędzi podstawy równej 9 i wysokości równej 12. Wierzchołki podstawy ABCD graniastosłupa połączono odcinkami z punktem W , który jest punktem przecięcia przekątnych podstawy EF GH . Otrzymano w ten sposób ostrosłup prawidłowy czworokątny ABCDW .


PIC


Oblicz cosinus kąta nachylenia krawędzi bocznej ostrosłupa do płaszczyzny podstawy.

Dany jest ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD . Ramię trójkąta równoramiennego ASC ma długość 8 i jest dwa razy dłuższe od jego podstawy. Oblicz sinus kąta nachylenia ściany bocznej do płaszczyzny podstawy.


PIC


Krawędź boczna ostrosłupa prawidłowego czworokątnego jest dwa razy dłuższa od krawędzi podstawy. Oblicz cosinus kąta między sąsiednimi ścianami bocznymi.

Ukryj Podobne zadania

W ostrosłupie prawidłowym czworokątnym pole podstawy jest dwa razy większe od pola ściany bocznej. Oblicz cosinus kąta między sąsiednimi ścianami bocznymi tego ostrosłupa.

Dany jest ostrosłup prawidłowy czworokątny, w którym wszystkie krawędzie mają równą długość. Zaznacz na rysunku kąt utworzony przez dwie sąsiednie ściany boczne tego ostrosłupa i oblicz cosinus tego kąta.


PIC


Długość krawędzi podstawy ostrosłupa prawidłowego czworokątnego jest równa 6. Pole powierzchni całkowitej tego ostrosłupa jest cztery razy większe od pola jego podstawy. Kąt α jest kątem nachylenia krawędzi bocznej tego ostrosłupa do płaszczyzny podstawy (zobacz rysunek). Oblicz cosinus kąta α .


PIC


Objętość ostrosłupa prawidłowego czworokątnego ABCDS o podstawie ABCD jest równa 224, a promień okręgu opisanego na podstawie ABCD jest równy  √ --- 2 14 . Oblicz cosinus kąta między wysokością tego ostrosłupa i jego ścianą boczną.

Dany jest ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD . W trójkącie równoramiennym ASC stosunek długości podstawy do długości ramienia jest równy |AC | : |AS | = 6 : 5 . Oblicz sinus kąta nachylenia ściany bocznej do płaszczyzny podstawy.

Krawędź boczna ostrosłupa prawidłowego czworokątnego jest nachylona do płaszczyzny podstawy pod kątem α takim, że sin α = 13 . Oblicz cosinus kąta nachylenia ściany bocznej do płaszczyzny podstawy.

spinner