Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Trójkąt

Wyszukiwanie zadań

W trójkącie ABC poprowadzono dwusieczne kątów A i B . Dwusieczne te przecinają się w punkcie P . Uzasadnij, że kąt AP B jest rozwarty.

Ukryj Podobne zadania

W trójkącie ostrokątnym ABC proste AH i BH zawierają wysokości poprowadzone z wierzchołków A i B . Uzasadnij, że kąt AHB jest rozwarty.

Dany jest trójkąt ABC . Odcinek CD jest wysokością tego trójkąta, punkt E jest środkiem boku BC (tak jak na rysunku) i |CD | = |DE | . Udowodnij, że trójkąt CDE jest równoboczny.


PIC


W trójkącie prostokątnym ABC przyprostokątne mają długości |AC | = b,|BC | = a , a wysokość opuszczona z wierzchołka kąta prostego ma długość h .


PIC


Wykaż, że jeżeli b2 = a ⋅h to  √- cos ∡BAC = -52−1- .

Stosunek długości przyprostokątnych trójkąta prostokątnego wynosi 3:8, a środkowa poprowadzona do dłuższej przyprostokątnej ma długość 15.

  • Oblicz długość przyprostokątnych trójkąta.
  • Oblicz odległość środka ciężkości trójkąta od dłuższej przyprostokątnej.

W trójkącie równoramiennym środkowe ramion są prostopadłe. Oblicz cosinus kąta między ramionami.

Jeden kąt ostry trójkąta prostokątnego ma miarę α . Wyznacz długości boków tego trójkąta wiedząc, że wysokość poprowadzona z wierzchołka kąta prostego ma długość h .

Trójkąty ABC i CDE są prostokątne oraz |∡BAC | = |∡DCE | . Punkty A ,C i E leżą na jednej prostej. Punkty K ,L i M są środkami odcinków AC ,CE i BD (zobacz rysunek). Wykaż, że kąt ∡KML jest prosty.


PIC


Ukryj Podobne zadania

Trójkąty ABC i CDE są równoramienne i prostokątne. Punkty A ,C i E leżą na jednej prostej, a punkty K ,L i M są środkami odcinków AC ,CE i BD (zobacz rysunek). Wykaż, że |MK | = |ML | .


PIC


Z punktu P należącego do boku AB trójkąta równobocznego ABC poprowadzono półprostą dzielącą trójkąt na dwie figury o równych polach. Oblicz tangens kąta jaki tworzy ta półprosta z odcinkiem AP , jeśli |AP | : |PB | = m i m ⁄= 1 .

Wykaż, że jeżeli kąty trójkąta: α,β,γ spełniają równanie  2 2 2 sin α = sin β + sin γ to trójkąt jest prostokątny.

Dany jest trójkąt prostokątny. Wykaż, że suma pól kół o średnicach będących przyprostokątnymi trójkąta jest równa polu koła o średnicy równej przeciwprostokątnej.

Ukryj Podobne zadania

Na bokach trójkąta prostokątnego zbudowano trójkąty równoboczne. Wykaż, że pole figury zbudowanej na przeciwprostokątnej jest równe sumie pól figur zbudowanych na przyprostokątnych.

W trójkącie ostrokątnym ABC bok AB ma długość 18 cm, a wysokość CD jest równa 15 cm. Punkt D dzieli bok AB tak, że |AD | : |DB | = 1 : 2 . Przez punkt P leżący na odcinku DB poprowadzono prostą równoległą do prostej CD , odcinając od trójkąta ABC trójkąt, którego pole jest cztery razy mniejsze niż pole trójkąta ABC . Oblicz długość odcinka P B .

Wykaż, że jeżeli środkowa trójkąta jest dwa razy krótsza od boku, do którego jest poprowadzona, to trójkąt ten jest prostokątny.

Na przyprostokątnych AC i BC trójkąta prostokątnego ABC zbudowano, na zewnątrz trójkąta, kwadraty ACDE i BF GC . Odcinek AF przecina przyprostokątną BC w punkcie L , a odcinek BE przecina przyprostokątną AC w punkcie K (zobacz rysunek). Udowodnij, że |KC | = |LC | .


PIC


W trójkącie ABC , w którym |∡CAB | = α , poprowadzono dwusieczną CD kąta wewnętrznego ACB , przy czym |∡CDA | = β . Oblicz |AD-| |DB| .

W trójkącie równobocznym ABC o wysokości h obrano punkt P , z którego poprowadzono odcinki prostopadłe do boków tego trójkąta. Wykaż, że suma długości tych odcinków jest równa h .

Oblicz długość boku trójkąta równobocznego, wiedząc, że bok ten jest o 2 cm dłuższy od wysokości tego trójkąta.

Wykaż, że jeżeli promień okręgu opisanego na trójkącie równoramiennym jest dwa razy dłuższy od promienia okręgu wpisanego w ten trójkąt, to trójkąt ten jest równoboczny.

W trójkącie prostokątnym ABC jedna z przyprostokątnych jest o 7 dłuższa od drugiej, a promień okręgu wpisanego w ten trójkąt jest równy 3. Oblicz obwód trójkąta ABC .

Strona 11 z 24
spinner