Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Geometria analityczna

Wyszukiwanie zadań

Rozpatrujemy wszystkie trapezy ABCD , których wierzchołki A i B leżą na wykresie funkcji f (x) = − 23 ⋅x12 − 1 określonej dla x ⁄= 0 . Punkt C ma współrzędne (1,1) , a oś Oy jest osią symetrii tego trapezu (zobacz rysunek).


PIC


Oblicz obwód tego trapezu ABCD , którego pole jest najmniejsze możliwe.

Wykaż, że styczne do okręgu  2 2 x + y − 8x + 4y + 15 = 0 poprowadzone przez punkt A = (3,1) są prostopadłe.

Środek okręgu o równaniu  2 2 x + y − 8x = 0 i punkt P (1 ,4) należą do prostej l , która przecina okrąg w punktach A i B . Oblicz pole trójkąta ABO gdzie O to początek układu współrzędnych.

Podstawa AB trójkąta równobocznego ABC zawarta jest w prostej y = 34x + 1 , a wierzchołek C = (− 1,4) . Wyznacz współrzędne wierzchołków A ,B tego trójkąta.

Wierzchołki trójkąta równobocznego ABC są punktami paraboli  2 y = −x + 6x . Punkt C jest jej wierzchołkiem, a bok AB jest równoległy do osi Ox . Sporządź rysunek w układzie współrzędnych i wyznacz współrzędne wierzchołków tego trójkąta.

Dany jest trójkąt równoramienny ABC , w którym |AC | = |BC | oraz B = (0,− 3) i C = (2,3) . Oś symetrii tego trójkąta ma równanie y − x − 1 = 0 . Oblicz współrzędne wierzchołka A .

Ukryj Podobne zadania

Punkty A = (4,6) i B = (− 12,6) są wierzchołkami trójkąta równoramiennego ABC , w którym |AB | = |AC | . Wysokość AD tego trójkąta jest zawarta w prostej o równaniu y = 12 x+ 4 . Oblicz współrzędne wierzchołka C tego trójkąta.

Punkty A = (− 2,− 8) i B = (14,− 8) są wierzchołkami trójkąta równoramiennego ABC , w którym |AB | = |AC | . Wysokość AD tego trójkąta jest zawarta w prostej o równaniu y = 12x − 7 . Oblicz współrzędne wierzchołka C tego trójkąta.

Punkty A = (2,4) i B = (− 14,4) są wierzchołkami trójkąta równoramiennego ABC , w którym |AB | = |AC | . Wysokość AD tego trójkąta jest zawarta w prostej o równaniu y = 12 x+ 3 . Oblicz współrzędne wierzchołka C tego trójkąta.

Dana jest prosta k o równaniu parametrycznym { x = 3+ 2t y = −1 + 2t dla t ∈ R . Znajdź równanie parametryczne:

  • prostej m równoległej do prostej k , przechodzącej przez punkt P(− 2,4) .
  • prostej n prostopadłej do prostej k , przechodzącej przez punkt Q (1,− 3) .

Podaj współrzędne środka i długość promienia okręgu o równaniu: (x − 4)2 + (y + 2)2 = 2 5 .

Ukryj Podobne zadania

Podaj współrzędne środka i długość promienia okręgu o równaniu: x 2 + (y − 1)2 = 1 7 .

Podaj współrzędne środka i długość promienia okręgu o równaniu: (x + 1,5 )2 + y2 = 32 .

Podaj współrzędne środka i długość promienia okręgu o równaniu: x 2 + y2 + 8x − 1 2y+ 3 = 0 .

Wyznacz współrzędne środka i promień okręgu o równaniu x 2 − 4x + y 2 + 1 2y+ 31 = 0 .

Podaj współrzędne środka i długość promienia okręgu o równaniu x 2 + y2 − 10x + 4y = 0 .

Kwadrat o wierzchołkach A = (1,2),B = (4,1),C = (5,4),D = (2,5) przekształcono w jednokładności o skali ujemnej i otrzymano kwadrat o wierzchołkach K = (2,1 ),L = (8,− 1),M = (10,5),N = (4,7) . Wyznacz środek i skalę tej jednokładności.

Oblicz pole pięciokąta ABCDE , którego wierzchołki mają współrzędne A = (− 3,3), B = (1,− 3), C = (4,1), D = (3,5), E = (1,1) .

Punkty  ( 1 1) A = − 2;− 12 ,  ( 1 1) B = 32 ;2 są wierzchołkami trójkąta równoramiennego ABC o podstawie AB . Ramię BC zawiera się w prostej o równaniu 8x + 14y − 35 = 0 . Oblicz współrzędne punktu C i pole tego trójkąta.

W trapezie równoramiennym ABCD podstawa CD ma długość 5. Punkt F = (3,11) jest środkiem odcinka CD . Prosta o równaniu y = − 43x + 15 jest osią symetrii tego trapezu oraz  ( ) B = 23,8 2 . Oblicz współrzędne wierzchołka A oraz pole tego trapezu.

Dany jest punkt P = (− 2,3) i prosta k o równaniu 2x − y + 4 = 0 .

  • Wyznacz równanie prostej k′ , która jest obrazem prostej k w symetrii względem punktu P .
  • Oblicz odległość między prostymi k i  ′ k .

Dane są dwa wierzchołki A (9,− 1) i B (−7 ,3) prostokąta ABCD oraz punkt E (4,− 4) należący do boku CD.

  • Wyznacz równanie prostej zawierającej bok CD ;
  • Oblicz współrzędne wierzchołka C;
  • Oblicz współrzędne punktu S przecięcia się przekątnych tego prostokąta.

W trójkąt równoboczny ABC wpisano okrąg o środku w punkcie S = (3,− 1) . Wiedząc, że wierzchołek C ma współrzędne (1,− 3) wyznacz współrzędne pozostałych wierzchołków tego trójkąta.

Jeden z boków kwadratu ABCD jest zawarty w prostej o równaniu 2x − y − 2 = 0 . Wierzchołek A ma współrzędne (1,5) .

  • Znajdź współrzędne pozostałych wierzchołków.
  • Oblicz pole kwadratu ABCD .

Punkt C = (5,− 1) jest wierzchołkiem trójkąta prostokątnego ABC , w którym |∡ABC | = 90∘ i |AB | = 2|BC | . Prosta BC ma równanie x − 2y − 7 = 0 , a punkt A leży na prostej k o równaniu y = x + 8 . Wyznacz współrzędne środka okręgu opisanego na trójkącie ABC .

Długości wektorów → → a ,b wynoszą odpowiednio 3 i 5. Ponadto znamy ich iloczyn skalarny → → a ∘ b = − 2 . Obliczyć iloczyn skalarny wektorów → → p ∘ q , gdzie  → →p = →a − b ,  → →q = 2→a + 3b .

Dwa wierzchołki prostokąta leżą na osi x , a pozostałe dwa należą do paraboli o równaniu f(x) = 4− x 2 i znajdują się powyżej osi x .

  • Podaj wzór funkcji opisującej pole tego prostokąta w zależności od jego podstawy.
  • Dla jakiej długości podstawy pole tego prostokąta jest równe 6.
  • Dla jakiej długości podstawy pole tego prostokąta jest największe?

Oblicz współrzędne środka S i skalę k jednokładności, w której obrazem odcinka PR jest odcinek P 1R 1 i wiadomo, że P = (− 2,1) , R1 = (3 ,1) ,  −→ SP 1 = [3,9] i −→ SR = [2 ,1] .

Strona 6 z 27
spinner