Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Czworokąt/Prostokąt/Udowodnij

Wyszukiwanie zadań

Dany jest prostokąt o polu 12, w którym długość przekątnej jest liczbą z przedziału ⟨5,6⟩ . Wykaż, że obwód tego prostokąta jest liczbą z przedziału  √ --- ⟨14 ,4 15⟩ .

Punkt E jest środkiem boku BC prostokąta ABCD , w którym AB > BC . Punkt F leży na boku CD tego prostokąta oraz ∡AEF = 90 . Udowodnij, że ∡BAE = ∡EAF .

Dany jest prostokąt ABCD , którego jeden bok jest dwa razy dłuższy od drugiego. Na boku DC zbudowano trójkąt równoboczny CDE (zobacz rysunek). Punkt K jest takim punktem odcinka CE , że |∡BKC | = 7 5∘ . Udowodnij, że punkt K jest środkiem odcinka CE .


PIC


Punkt M leży wewnątrz prostokąta ABCD (zob. rysunek). Udowodnij, że AM 2 + CM 2 = BM 2 + DM 2 .


PIC


Dany jest prostokąt ABCD , którego boki mają długości x i y . Punkt S jest punktem przecięcia się przekątnych prostokąta.


PIC


  • Wykaż, że pole trójkąta ASD jest cztery razy mniejsze od pola prostokąta ABCD .
  • Wiedząc dodatkowo, że  2 P ΔASD = 15 cm i  ∘ |∡ASD | = 30 , oblicz pole kwadratu, którego bok ma długość (x + y) .

W prostokącie, którego krótszy bok ma długość 8 zawarty jest kwadrat o boku równym różnicy


PIC


długości boków prostokąta, i którego przekątne są równoległe do boków prostokąta.

  • Wyraź pole pozostałe po wycięciu kwadratu z prostokąta jako funkcję dłuższego boku prostokąta. Wyznacz dziedzinę otrzymanej funkcji.
  • Wykaż, że różnica pól prostokąta i kwadratu jest zawsze większa od 64.

Punkt P leży wewnątrz prostokąta ABCD . Wykaż, że suma pól trójkątów AP D i BP C jest równa sumie pól trójkątów AP B i DP C .

W prostokąt ABCD wpisany jest trójkąt równoboczny AKL (patrz rysunek). Wierzchołek K leży na boku BC (K ⁄= B i K ⁄= C ), wierzchołek L leży na boku DC (L ⁄= D i L ⁄= C ). Udowodnij, że pole powierzchni trójkąta KLC równe jest sumie pól trójkątów ABK i DLA .


PIC


Dany jest prostokąt ABCD . Okrąg wpisany w trójkąt BCD jest styczny do przekątnej BD w punkcie N . Okrąg wpisany w trójkąt ABD jest styczny do boku AD w punkcie M , a środek S tego okręgu leży na odcinku MN , jak na rysunku.


PIC


Wykaż, że |MN | = |AD | .

Dany jest prostokąt ABCD . Na boku CD tego prostokąta wybrano taki punkt E , że |EC | = 2|DE | , a na boku |AB | wybrano taki punkt F , że |BF | = |DE | . Niech P oznacza punkt przecięcia prostej EF z prostą BC (zobacz rysunek). Wykaż, że trójkąty AED i F PB są przystające.


PIC


Ukryj Podobne zadania

Dany jest prostokąt ABCD . Na boku CD tego prostokąta wybrano taki punkt E , że |EC | = 2|DE | , a na przedłużeniu boku CB wybrano taki punkt F , że |BF | = |BC | . Niech P oznacza punkt przecięcia prostej EF z prostą AB (zobacz rysunek). Wykaż, że trójkąty AED i P FB są przystające.


PIC


W prostokącie ABCD wierzchołek D połączono odcinkami ze środkami E i F boków AB i BC , zaś M i N to punkty przecięcia tych odcinków z przekątną AC .

  • Uzasadnij, że odcinki AM ,MN i NC są jednakowej długości.
  • Uzasadnij, że trójkąty AEM i CNF mają równe pola.

PIC

Na bokach AB i BC prostokąta ABCD wybrano punkty K i L w ten sposób, że trójkąt DKL jest ostrokątny oraz |∡KDL | = α . Odcinek DM jest wysokością trójkąta DKL .


PIC


Wykaż, że |∡AMC | = 90 ∘ + α .

Na rysunku przedstawiono prostokąt ABDE i trójkąt ABC . Punkty K i L dzielą odcinki AC i BC na połowy. Uzasadnij, że pole prostokąta ABDE jest równe polu trójkąta ABC .


PIC


Punkt P należy do okręgu opisanego na prostokącie ABCD . Wykaż, że |PA |2 + |P C|2 = |PB |2 + |P D|2 .


PIC


Punkt F jest środkiem boku AD prostokąta ABCD , w którym AB > BC . Punkt E jest takim punktem boku AB tego prostokąta, że prosta CF jest dwusieczną kąta DCE . Wykaż, że trójkąt CF E jest prostokątny.

W prostokącie ABCD punkt P jest środkiem boku BC , a punkt R jest środkiem boku CD . Wykaż, że pole trójkąta AP R jest równe sumie pól trójkątów ADR oraz PCR .


PIC


Ukryj Podobne zadania

W prostokącie ABCD punkt P jest środkiem boku AD , a punkt R jest środkiem boku AB . Wykaż, że pole trójkąta P RC jest równe sumie pól trójkątów AP R oraz P DC .


PIC


Przez wierzchołek C prostokąta ABCD poprowadzono prostą, która przecięła proste AB i AD w punktach K i L odpowiednio. Wykaż, że -|AB-|+ |AD-|= 1 |AK | |AL | .


PIC


Uzasadnij, że jeżeli prostokąt ABCD nie jest kwadratem, to punkty przecięcia dwusiecznych jego kątów wewnętrznych są wierzchołkami kwadratu.


PIC


spinner