Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Czworokąt

Wyszukiwanie zadań

Wykaż, że w dowolnym trapezie suma długości podstaw jest mniejsza od sumy długości przekątnych.

Ukryj Podobne zadania

Wykaż, że w dowolnym trapezie suma długości ramion jest mniejsza od sumy długości przekątnych.

Przekątne czworokąta ABCD wpisanego w okrąg przecinają się w punkcie S , a punkt E jest takim punktem przekątnej BD , że |∡DCS | = |∡BCE | (zobacz rysunek).


PIC


Wykaż, że  |CD|⋅|CB| |CE | = --|CA|-- .

Wysokość trapezu równoramiennego ma długość √ -- 6 , a jedna z podstaw jest trzy razy dłuższa od drugiej. Oblicz pole trapezu wiedząc, że sinus jego kąta ostrego jest równy 0,2.

Bok rombu ABCD ma długość a , a sinus jego kąta ostrego DAB jest równy √ -- --15 4 . Na bokach BC i CD wybrano punkty K i L odpowiednio tak, że odcinki AK i AL podzieliły pole rombu ABCD na trzy równe części (zobacz rysunek).


ZINFO-FIGURE


Oblicz długość odcinka AL .

Wykaż, że jeśli przekątna trapezu równoramiennego zawiera się w dwusiecznej jego kąta ostrego, to ramię jest równe krótszej podstawie.

Obwód trapezu równoramiennego wynosi 32 cm. Wysokość poprowadzona z wierzchołka kąta rozwartego dzieli podstawę na dwa odcinki o długościach 3 cm i 11 cm. Oblicz pole trapezu.

Ukryj Podobne zadania

Obwód trapezu równoramiennego wynosi 50 cm. Wysokość poprowadzona z wierzchołka kąta rozwartego dzieli podstawę na dwa odcinki o długościach 5 cm i 12 cm. Oblicz pole trapezu.

Przekątne dzielą trapez na cztery trójkąty. Wykaż, że pola tych trójkątów, w których jeden z boków jest ramieniem trapezu, są równe.

Ukryj Podobne zadania

Przekątne dzielą trapez na cztery trójkąty. Wykaż, że stosunek pól tych trójkątów, w których jeden z boków jest podstawą trapezu, jest równy stosunkowi kwadratów długości podstaw trapezu.

Przekątne dzielą trapez na cztery trójkąty. Wykaż, że stosunek pól trójkątów takich, że bokiem jednego jest ramię trapezu, a bokiem drugiego jest podstawa trapezu, jest równy stosunkowi długości podstaw trapezu.

W czworokącie ABCD dane są długości boków: |AB | = 24,|CD | = 1 5,|AD | = 7 . Ponadto kąty DAB oraz BCD są proste. Oblicz pole tego czworokąta oraz długości jego przekątnych.

Dany jest prostokąt ABCD , którego boki mają długości x i y . Punkt S jest punktem przecięcia się przekątnych prostokąta.


PIC


  • Wykaż, że pole trójkąta ASD jest cztery razy mniejsze od pola prostokąta ABCD .
  • Wiedząc dodatkowo, że  2 P ΔASD = 15 cm i  ∘ |∡ASD | = 30 , oblicz pole kwadratu, którego bok ma długość (x + y) .

Udowodnij, że jeżeli środki boków dwóch czworokątów wypukłych pokrywają się, to pola tych czworokątów są równe.

Na bokach AD , AB i BC rombu ABCD wybrano punkty K , L i M w ten sposób, że |AL | : |LB| = k oraz KL ∥ DB , LM ∥ AC . Wyznacz wszystkie wartości k , dla których pole pięciokąta KLMCD stanowi 1116 pola rombu.


PIC


Oblicz pole rombu, którego jeden z kątów wewnętrznych wynosi  ∘ 120 , a przekątna poprowadzona z wierzchołka tego kąta ma długość 10 cm.

Ukryj Podobne zadania

Krótsza przekątna rombu o długości  √ -- 8 3 cm dzieli go na dwa trójkąty równoboczne. Oblicz pole rombu.

Czworokąt ABCD jest równoległobokiem. Wykaż, że jeżeli okręgi o średnicach AB i CD są styczne zewnętrznie, to równoległobok ABCD jest rombem.

Prosta przechodząca przez wierzchołek A równoległoboku ABCD przecina jego przekątną BD w punkcie E i bok BC w punkcie F , a prostą DC w punkcie G . Udowodnij, że

|EA |2 = |EF| ⋅|EG |.

Wysokość DE rombu ABCD dzieli bok AB tego rombu tak, że  3 |AE | : |EB | = 2 (zobacz rysunek).


PIC


Oblicz wartość wyrażenia

 ( ) ( ) sin4 π-+ α- + sin4 π-+ β- , 8 4 8 4

gdzie α i β są dwoma sąsiednimi kątami wewnętrznymi rombu ABCD .

Prosta przechodząca przez wierzchołek C kwadratu ABCD przecina przedłużenia jego boków AB i AD odpowiednio w punktach K i L (zobacz rysunek).


PIC


Wykaż, że

--1---+ --1---= --1---. |CL |2 |CK |2 |AB |2

W czworokącie ABCD spełniony jest warunek |∡ADB | = |∡ACB | . Wykaż, że na czworokącie ABCD można opisać okrąg.

Dany jest prostokąt ABCD , w którym |AB | = a,|BC | = b i a > b . Odcinek AE jest wysokością trójkąta DAB opuszczoną na jego bok BD . Wyraź pole trójkąta AED za pomocą a i b .

Dany jest kwadrat ABCD o boku długości 8. Z wierzchołka A zakreślono koło o promieniu równym długości boku kwadratu (zobacz rysunek).


PIC


Oblicz pole powierzchni obszaru S otrzymanego z kwadratu ABCD przez wycięcie części pokrytej kołem.

Czworokąt ABCD jest trapezem prostokątnym, w którym AB ∥ CD . Wykaż że

|AC |2 + |BD |2 = |AD |2 + |BC |2 + 2|AB |⋅|DC |.
Strona 3 z 23
spinner