Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Prawdopodobieństwo/Z definicji/Zbiory liczb

Wyszukiwanie zadań

Ze zbioru pięciu liczb {1,2,3,4,5} losujemy bez zwracania kolejno dwa razy po jednej liczbie. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że obie wylosowane liczby są nieparzyste.

Ze zbioru wszystkich liczb naturalnych trzycyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że wylosowana liczba jest podzielna przez 4 oraz ma dwie cyfry nieparzyste.

Wzór funkcji  -a-- f(x) = x−b + c tworzymy w następujący sposób. Ze zbioru

Z = { − 3,− 2,− 1,1,2,3}

losujemy kolejno 3 liczby (bez zwracania); pierwsza z wylosowanych liczb jest równa współczynnikowi a , druga – współczynnikowi b , trzecia – współczynnikowi c . Oblicz prawdopodobieństwo zdarzeń:

  • A – funkcja f jest funkcją malejącą w każdym ze zbiorów (− ∞ ,2) oraz (2,+ ∞ ) ;
  • B – miejscem zerowym funkcji f jest 0.
  • C – funkcja f jest funkcją malejącą w każdym ze zbiorów (− ∞ ,− 2) oraz (2 ,+∞ ) ;

Ze zbioru liczb {2,3,4 ,5 ,6,7,8} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A polegającego na wylosowaniu liczb, z których pierwsza jest o 2 mniejsza od drugiej.

Ukryj Podobne zadania

Ze zbioru liczb {3,4,5 ,6 ,7,8,9} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A polegającego na wylosowaniu liczb, z których pierwsza jest o 3 większa od drugiej.

Ze zbioru sześciu liczb {1,2,3 ,4,5,6} losujemy ze zwracaniem kolejno dwa razy po jednej liczbie. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że pierwsza wylosowana liczba będzie większa od drugiej wylosowanej liczby.

Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że wylosowana liczba ma w zapisie dziesiętnym cyfrę dziesiątek, która należy do zbioru { 1,3,5,7,9} , i jednocześnie cyfrę jedności, która należy do zbioru {0 ,2,4,6,8} .

Ukryj Podobne zadania

Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że wylosowana liczba ma w zapisie dziesiętnym nieparzystą cyfrę jedności, oraz parzystą cyfrę dziesiątek.

Ze zbioru R = {− 2,− 1,1,2,3} losujemy najpierw jedną liczbę i oznaczamy ją jako a . Następnie z pozostałych liczb losujemy drugą liczbę i oznaczamy ją jako b . Liczby a i b są współczynnikami funkcji kwadratowej f(x ) = ax2 + b . Oblicz prawdopodobieństwo zdarzenia:

  • A – funkcja f jest malejąca w zbiorze ⟨0,+ ∞ ) ,
  • B – funkcja f ma dwa różne miejsca zerowe.
Ukryj Podobne zadania

Ze zbioru D = {− 3,− 2,− 1,1,2} losujemy najpierw jedną liczbę i oznaczamy ją jako a . Następnie z pozostałych liczb losujemy drugą liczbę i oznaczamy ją jako b . Liczby a i b są współczynnikami funkcji kwadratowej f(x ) = ax2 + b . Oblicz prawdopodobieństwo zdarzenia:

  • X – funkcja f jest malejąca w zbiorze ⟨0,+ ∞ ) ,
  • Y – funkcja f ma dwa różne miejsca zerowe.

Ze zbioru liczb: { 1,2,3,4,...,2n } , gdzie n ∈ N i n > 2 losujemy kolejno trzy razy po jednej liczbie bez zwracania. Niech An oznacza zdarzenie: iloczyn wylosowanych liczb jest liczbą nieparzystą, a P (An ) prawdopodobieństwo zajścia zdarzenia An . Oblicz:  lim P(An ) n→ + ∞ .

Ze zbioru {1,2,...,10} losujemy kolejno 3 liczby (mogą się powtarzać). Wyznacz prawdopodobieństwo wyboru takiej trójki (x ,y ,z) liczb, dla której x + y < z .

Ze zbioru cyfr {1,2 ,3,4,5,6,7,8} losujemy kolejno dwie cyfry (losowanie bez zwracania) i tworzymy liczby dwucyfrowe tak, że pierwsza wylosowana cyfra jest cyfrą dziesiątek, a druga – cyfrą jedności. Oblicz prawdopodobieństwo utworzenia liczby podzielnej przez 4.

Ukryj Podobne zadania

Ze zbioru wszystkich liczb naturalnych dwucyfrowych, których cyfra dziesiątek należy do zbioru {3,4,5,6,7,8} , a cyfra jedności należy do zbioru {0 ,1,2,3,4} , losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy liczbę dwucyfrową, która jest podzielna przez 4.

W dwóch pojemnikach znajdują się ponumerowane kule. W pierwszym pojemniku są kule z numerami: 1, 2, 3, 4, 5, w drugim z numerami: 4, 5, 6, 7, 8, 9. Losujemy po jednej kuli z każdego pojemnika i tworzymy liczbę dwucyfrową. Numer kuli wylosowanej z pierwszego pojemnika jest cyfrą dziesiątek, numer kuli wylosowanej z drugiego pojemnika jest cyfrą jedności. Oblicz prawdopodobieństwo zdarzenia, że utworzona liczba jest podzielna przez 4.

Ze zbioru wszystkich liczb naturalnych dwucyfrowych, których cyfra dziesiątek należy do zbioru {1,3,4,5,6,7,8 } , a cyfra jedności należy do zbioru {0 ,1,2,3,4} , losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy liczbę dwucyfrową, która jest podzielna przez 8.

Ze zbioru ośmiu kolejnych liczb naturalnych – od 1 do 8 – losujemy kolejno bez zwracania dwa razy po jednej liczbie. Niech A oznacza zdarzenie polegające na tym, że suma wylosowanych liczb jest dzielnikiem liczby 8. Oblicz prawdopodobieństwo zdarzenia A .

Mamy dwa pudełka: w pierwszym znajduje się 6 kul ponumerowanych kolejnymi liczbami od 1 do 6, a w drugim – 7 kul ponumerowanych kolejnymi liczbami od 2 do 8. Losujemy po jednej kuli z każdego pudełka i tworzymy liczbę dwucyfrową w ten sposób, że numer kuli wylosowanej z pierwszego pudełka jest cyfrą dziesiątek, a numer kuli wylosowanej z drugiego – cyfrą jedności tej liczby. Oblicz prawdopodobieństwo, że utworzona liczba jest podzielna przez 9.

Ze zbioru ośmiu kolejnych liczb naturalnych – od 1 do 8 – losujemy kolejno bez zwracania dwa razy po jednej liczbie. Niech A oznacza zdarzenie polegające na tym, że suma wylosowanych liczb jest dzielnikiem liczby 12. Oblicz prawdopodobieństwo zdarzenia A .

Mamy dwa pudełka: w pierwszym znajduje się 6 kul ponumerowanych kolejnymi liczbami od 1 do 6, a w drugim – 8 kul ponumerowanych kolejnymi liczbami od 1 do 8. Losujemy po jednej kuli z każdego pudełka i tworzymy liczbę dwucyfrową w ten sposób, że numer kuli wylosowanej z pierwszego pudełka jest cyfrą dziesiątek, a numer kuli wylosowanej z drugiego – cyfrą jedności tej liczby. Oblicz prawdopodobieństwo, że utworzona liczba jest podzielna przez 11.

Spośród liczb naturalnych sześciocyfrowych wybieramy jedną liczbę. Jakie jest prawdopodobieństwo wybrania liczby, której iloczyn cyfr jest podzielny przez 9, jeżeli wiadomo, że każda cyfra wylosowanej liczby jest większa od 1?

Ze zbioru {1,2,3,...,1996 } losujemy jedną liczbę. Oblicz prawdopodobieństwo, że wylosowana liczba jest podzielna przez:

  • 6
  • 4 lub 6
  • 4 lub 6 lub 10

Ze zbioru wszystkich liczb trzycyfrowych, które są podzielne przez 7 wybieramy losowo 5 różnych liczb. Oblicz prawdopodobieństwo tego, że jedną z tych liczb jest 546, a wśród pozostałych 4 liczb jest dokładnie jedna liczba mniejsza od 546. Wynik podaj w postaci ułamka nieskracalnego.

Ze zbioru siedmiu liczb naturalnych { 1,2,3,4,5,6,7} losujemy dwie różne liczby. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że większą z wylosowanych liczb będzie liczba 5.

Ukryj Podobne zadania

Ze zbioru ośmiu liczb naturalnych {1,2,3,4,5 ,6 ,7,8} losujemy dwie różne liczby. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że mniejszą z wylosowanych liczb będzie liczba 3.

Ze zbioru liczb {1,2,3,4 ,5,6,7,8} wybieramy losowo jednocześnie cztery liczby. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że najmniejszą wylosowaną liczbą będzie 3 lub największą wylosowaną liczbą będzie 7.

Niech X = {1,2,3,4,5 } i Y = { 1,2,3,4,5,6,7} . Oblicz prawdopodobieństwo, że zbiór wartości losowo utworzonej funkcji f : X → Y jest dwuelementowy.

Losujemy dwie różne liczby całkowite a i b z przedziału (− 1 1,11) . Oblicz prawdopodobieństwo zdarzenia A – równanie x2 + 2ax + b = 0 nie ma rozwiązań.

Z ustalonego zbioru n liczb rzeczywistych losujemy kolejno k liczb, otrzymując ciąg różnowartościowy (a1,a2,a3,...,ak) . Zakładając, że 2 ≤ k ≤ n , oblicz prawdopodobieństwo, że ten ciąg nie jest ciągiem rosnącym.

Z cyfr {0,1,2,3 ,4 ,5,6,7,8,9} losujemy 3 cyfry i zapisujemy z ich pomocą liczbę 3-cyfrową o niepowtarzających się cyfrach, przy czym zakładamy, że pierwsza cyfra jest niezerowa. Oblicz prawdopodobieństwo otrzymania liczby nieparzystej.

Ukryj Podobne zadania

Z cyfr {0,1,2,3 ,4 ,5,6,7,8,9} losujemy 3 cyfry i zapisujemy z ich pomocą liczbę 3-cyfrową o niepowtarzających się cyfrach, przy czym zakładamy, że pierwsza cyfra jest niezerowa. Oblicz prawdopodobieństwo otrzymania liczby większej od 666.

Z cyfr {0,1,2,3 ,4 ,5,6,7,8,9} losujemy 3 cyfry i zapisujemy z ich pomocą liczbę 3-cyfrową o niepowtarzających się cyfrach, przy czym zakładamy, że pierwsza cyfra jest niezerowa. Oblicz prawdopodobieństwo otrzymania liczby podzielnej przez 5.

Ze zbioru liczb {1,2 ,3,4,5} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A polegającego na wylosowaniu liczb, których iloczyn jest liczbą nieparzystą.

Ukryj Podobne zadania

Ze zbioru liczb {2,3 ,4,5,6} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A polegającego na wylosowaniu liczb, których iloczyn jest liczbą nieparzystą.

Ze zbioru liczb {1,2,3 ,4 ,5,6,7} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A polegającego na wylosowaniu liczb, których iloczyn jest liczbą parzystą.

Ze zbioru {−n ,− (n − 1),...,− 1,0,1,...,n − 1 ,n } , gdzie n ≥ 1 losujemy dwie liczby (mogą się powtarzać). Oblicz jakie jest prawdopodobieństwo, że suma wartości bezwzględnych wylosowanych liczb jest nie większa niż n .

Strona 4 z 6
spinner