Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

W okrąg o równaniu  2 2 x + y − 12x − 8y + 32 = 0 wpisano trójkąt równoboczny ABC w którym A = (2;6 ) . Oblicz współrzędne pozostałych wierzchołków trójkąta.

Dany jest wierzchołek trójkąta równobocznego C = (− 4,2) . Bok AB zawarty jest w prostej o równaniu 2x + 4y− 5 = 0 . Wyznacz długość boku tego trójkąta.

Punkt  (5 3 √ -) E = 2,− 2 3 jest środkiem boku AB trójkąta równobocznego ABC , a boki AC i BC tego trójkąta są zawarte odpowiednio w prostych o równaniach x = 1 i  √3- √3- y = − 3 x + 3 . Wyznacz współrzędne wierzchołków tego trójkąta.

Podstawa AB trójkąta równobocznego ABC zawarta jest w prostej y = 34x + 1 , a wierzchołek C = (− 1,4) . Wyznacz współrzędne wierzchołków A ,B tego trójkąta.

Wierzchołki trójkąta równobocznego ABC są punktami paraboli  2 y = −x + 6x . Punkt C jest jej wierzchołkiem, a bok AB jest równoległy do osi Ox . Sporządź rysunek w układzie współrzędnych i wyznacz współrzędne wierzchołków tego trójkąta.

W trójkąt równoboczny ABC wpisano okrąg o środku w punkcie S = (3,− 1) . Wiedząc, że wierzchołek C ma współrzędne (1,− 3) wyznacz współrzędne pozostałych wierzchołków tego trójkąta.

Punkt  √ -- A = (1,2 3) jest wierzchołkiem trójkąta równobocznego ABC . Bok BC jest zawarty w prostej o równaniu  √ -- √ -- 3y = 3x − 3 . Oblicz współrzędne wierzchołków B i C trójkąta.

Dane są punkty A (0,0) i B(4,2) .

  • Znajdź takie punkty C i D aby trójkąty ABC i ABD były równoboczne.
  • Znajdź równanie okręgu wpisanego w romb ABCD .
  • Oblicz pole figury, którą otrzymamy po usunięciu z rombu ABCD wnętrza wpisanego w niego koła.

W trójkącie równobocznym ABC dane są wierzchołek  √ -- A = (7,3 3) i środek okręgu wpisanego  √ -- S = (4,2 3) . Oblicz pole trójkąta ABC .

Punkt  √ -- E = (0,2 3) jest środkiem boku AB trójkąta równobocznego ABC , prosta AC ma równanie  √ -- y = 3x , a początek układu współrzędnych pokrywa się wierzchołkiem C tego trójkąta. Napisz równania wysokości trójkąta ABC przechodzących przez wierzchołki A i B .

Napisz równanie okręgu stycznego do osi y w punkcie A = (0,2) i przechodzącego przez punkt P = (4,6) . Wyznacz na okręgu takie punkty B i C , aby trójkąt ABC był równoboczny.

Odcinek AB jest wysokością trójkąta równobocznego. Oblicz długość boku trójkąta, jeśli wiadomo, że A = (− 3,− 2),B = (5,2)

Punkty A = (3,4) , B = (0,3 ) i C = (1,0) należą do okręgu. Oblicz pole trójkąta równobocznego opisanego na tym okręgu.

Dany jest okrąg  2 2 (x− 2) + (y− 1) = 3 . Oblicz pole trójkąta równobocznego wpisanego w ten okrąg.