Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Geometria analityczna

Wyszukiwanie zadań

Znajdź zbiór środków wszystkich cięciw okręgu  2 2 x + y + 4y + 3 = 0 , wyznaczonych przez proste przechodzące przez punkt P = (0,1) .

Punkty A = (0,3), B = (0,0), C = (− 5,0), D = (x,3) , gdzie x ∈ R − są kolejnymi wierzchołkami czworokąta ABCD . Oblicz wartość x , dla której w czworokąt ABCD można wpisać okrąg.

Znajdź równania prostych stycznych do dwóch okręgów:  2 2 (x− 3) + y = 9 i (x + 5)2 + y2 = 2 5 .

Wyznacz punkt wspólny symetralnej odcinka AB , gdzie A = (− 3 ,4 ),B = (2,1) , oraz osi Oy .

Punkt S jest punktem przecięcia się przekątnych równoległoboku ABCD , a punkt P jest takim punktem boku BC tego równoległoboku, że |BP | : |P C| = 3 . Oblicz współrzędne spodka wysokości opuszczonej z wierzchołka A tego równoległoboku na prostą CD , jeżeli  −→ AB = [4,4] , −→ DS = [3,− 3] i  ( ) P = 7, 7 2 2 .

Okrąg o równaniu  2 2 (x − 1 ) + (y + 2) = 1 przecina jedną z gałęzi hiperboli o równaniu f(x) = x2−2 − 1 , gdzie x ⁄= 2 , w punktach A (0,− 2) i B(1,− 3) .

  • Narysuj obie krzywe we wspólnym układzie współrzędnych.

  • Na drugiej gałęzi hiperboli wyznacz współrzędne takiego punktu C , który jest równo odległy od punktów A i B .

W trójkącie równoramiennym ABC dane są wierzchołki podstawy: B = (1,− 1) i C = (4,0) . Jedno z ramion trójkąta zawiera się w prostej o równaniu x+ 2y− 4 = 0 . Na boku AB tego trójkąta obrano taki punkt P , że |AP | : |PB | = 3 : 2 . Napisz równanie okręgu o środku w punkcie P , stycznego do podstawy BC .

Dane są punkty A = (− 4,32) i B = (−3 6,16) . Wykaż, że koło o średnicy AB jest zawarte w II ćwiartce prostokątnego układu współrzędnych.

Punkty A = (30,3 2) i B = (0,8 ) są sąsiednimi wierzchołkami czworokąta ABCD wpisanego w okrąg. Prosta o równaniu x − y + 2 = 0 jest jedyną osią symetrii tego czworokąta i zawiera przekątną AC . Oblicz współrzędne wierzchołków C i D tego czworokąta.

Punkty A = (− 1,− 5),B = (5,1),C = (1,3),D = (− 2,0) są kolejnymi wierzchołkami trapezu ABCD . Oblicz pole tego trapezu.

Dane są figury:

 2 2 F1 = {x ∈ R ,y ∈ R|x + y − 6y ≤ 0} F2 = {x ∈ R ,y ∈ R|y ≤ 6 − |x|}.
  • Narysuj figury F 1 i F 2 oraz wyznacz figurę F = F ∩ F 1 2 .
  • Oblicz pole figury F
Ukryj Podobne zadania

Dane są figury:

 2 2 F1 = {x ∈ R,y ∈ R|x + y − 6x ≤ 0} F2 = {x ∈ R,y ∈ R|y ≤ 6 − |x|}.
  • Narysuj figury F 1 i F 2 oraz wyznacz figurę F = F ∩ F 1 2 .
  • Oblicz pole figury F

Punkty A = (− 3,2), B = (0 ,3), C = (− 2,5) to wierzchołki trójkąta. Podaj, jakie są współrzędne wierzchołków trójkąta symetrycznego do trójkąta ABC względem

  • osi x ,
  • osi y ,
  • punktu (0,0) .

Wyznacz równanie okręgu wpisanego w kwadrat ABCD , gdzie A = (1,1) i C = (5,3) .

Wyznacz równanie okręgu opisanego na prostokącie ABCD , w którym A = (− 7,3) i C = (5,1) .

Dane są punkty A = (2,3) i B = (5,4) . Na prostej o równaniu y = 5 wyznacz punkt C tak, aby łamana ACB miała jak najmniejszą długość. Odpowiedź uzasadnij.

Dane są punkty A = (15,35) i B = (20,60) . Wyznacz współrzędne punktu przecięcia prostej AB z osią Oy .

Okrąg jest styczny do osi układu współrzędnych w punktach A = (0,2) i B = (2,0) oraz jest styczny do prostej l w punkcie C = (1,a) , gdzie a > 1 . Wyznacz równanie prostej l .

Ukryj Podobne zadania

Okrąg jest styczny do osi układu współrzędnych w punktach A = (0,2) i B = (− 2,0) oraz jest styczny do prostej l w punkcie C = (− 1,a) , gdzie a > 1 . Wyznacz równanie prostej l .

Rozważmy cięciwy AB paraboli  2 y = x + 4x + 3 przechodzące przez punkt (1,0) , przy czym przez cięciwę AB rozumiemy prostą przecinającą tę parabolę w dwóch punktach A i B . Wyznacz współrzędne punktów A i B , dla których suma współrzędnych środka odcinka AB cięciwy AB jest równa − 2 .

Punkt A = (− 4,2) oraz B = (2 ,6) są symetryczne względem prostej k . Wyznacz równanie prostej k .

Ukryj Podobne zadania

Punkt A = (− 5,− 3) oraz B = (7,5 ) są symetryczne względem prostej k . Wyznacz równanie prostej k .

Oblicz pole trójkąta utworzonego przez osie układu współrzędnych i przez prostą o ujemnym współczynniku kierunkowym m do której należy punkt A = (1,1) . Dla jakiej wartości m pole tego trójkąta jest najmniejsze?

Strona 19 z 27
spinner