Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Wyznacz te wartości parametru a , dla których zbiorem rozwiązań nierówności (a − 1)x 2 + x + 0,2 5 ≥ 0 jest zbiór liczb rzeczywistych.

Znajdź wszystkie wartości m , dla których funkcja  2 2 f(x) = (m − 1)x + 2(m − 1)x + 2 przyjmuje wartość dodatnią dla każdej liczby rzeczywistej x .

Dana jest nierówność kwadratowa z parametrem m :  2 2 (m + m − 6)x + (m − 2 )x+ 1 > 0 . Dla jakich wartości parametru m nierówność jest spełniona przez każdą liczbę rzeczywistą?

Funkcja f każdej liczbie naturalnej dodatniej n przyporządkowuje liczbę wszystkich liczb naturalnych należących do zbioru rozwiązań nierówności (n − x )(x− 2n) > 0 z niewiadomą x . Napisz wzór funkcji f i narysuj jej wykres dla n < 6 .

Dla jakich wartości parametru m funkcja

 { f(x ) = (m − 1)x + m dla x < 1 x2 + (m − 2)x + 4 − 2m dla x ≥ 1

przyjmuje tylko dodatnie wartości?

Dla jakich wartości parametru a zbiór rozwiązań nierówności x 2 + (a + 2)x − a < 0 jest niepusty i należą do niego tylko liczby ujemne?

Dla jakich wartości parametru a zbiór rozwiązań nierówności  2 x − 3x + 2 < 0 jest zawarty w zbiorze rozwiązań nierówności ax2 − (3a+ 1)x + 3 > 0 ?

Dla jakich wartości parametru m nierówność  2 m+ 2 m− 3 x − 2 x− 2 > 12 jest prawdziwa dla każdej liczby rzeczywistej.

Dla jakich wartości parametru m wartości funkcji  2 f(x) = (2m + 1)x + (m − 1)x + 3m są dla każdego argumentu x mniejsze od odpowiednich wartości funkcji g (x ) = (1− m )x+ 3 ?

Znajdź wszystkie wartości parametru m , dla których zbiór (1;+ ∞ ) zawiera się w zbiorze rozwiązań nierówności x2 − mx + m > 0 .

Rozwiązaniem nierówności  2 − x + 10x − 5a < 0 jest zbiór (− ∞ ,5)∪ (5 ,+ ∞ ) . Wyznacz a .

Wyznacz wszystkie wartości x , dla których nierówność (m 2 − 1)x2 + 2(m − 1)x + 2 > 0 jest prawdziwa dla każdego m ∈ R .

Wyznacz wszystkie wartości m , dla których nierówność (m 2 − 1)x2 + 2(m − 1)x + 2 > 0 jest prawdziwa dla każdego x ∈ R .

Wyznacz te wartości parametru m , dla których nierówność (m 2 + 5m − 6)x2 − 2(m − 1 )x+ 3 > 0 jest prawdziwa dla każdego x ∈ R .

Wyznacz te wartości parametru p , dla których nierówność (p − 2)x 2 + (p − 2)x+ p − 1 < 0 nie ma rozwiązań.