Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria/Ostrosłup/Dowolny/Czworokątny/Kwadrat w podstawie

Wyszukiwanie zadań

Podstawą ostrosłupa ABCDS jest kwadrat ABCD (patrz rysunek).


ZINFO-FIGURE


Krawędź AS jest wysokością tego ostrosłupa. Odległość punktu B od krawędzi CS jest równa d , a kąt dwuścienny między ścianami BCS i CDS ma miarę 2 α , gdzie α ∈ ( π, π-) 4 2 . Oblicz:

  • odległość punktu A od krawędzi CS

  • wysokość tego ostrosłupa.

Podstawą ostrosłupa ABCDS jest kwadrat ABCD . Krawędź boczna SD jest wysokością ostrosłupa, a jej długość jest dwa razy większa od długości krawędzi podstawy. Oblicz sinus kąta między ścianami bocznymi ABS i CBS tego ostrosłupa.

Ukryj Podobne zadania

Podstawą ostrosłupa ABCDS jest kwadrat ABCD o boku długości a , a krawędź boczna SD jest wysokością ostrosłupa. Oblicz objętość ostrosłupa jeżeli cosinus kąta między ścianami bocznymi ABS i CBS tego ostrosłupa jest równy − 1 5 .

Dany jest ostrosłup, którego podstawą jest kwadrat o boku 6. Jedna z krawędzi bocznych tego ostrosłupa ma długość 12 i jest prostopadła do płaszczyzny podstawy. Oblicz objętość tego ostrosłupa.

Ukryj Podobne zadania

Dany jest ostrosłup, którego podstawą jest kwadrat o boku 5. Jedna z krawędzi bocznych tego ostrosłupa ma długość 9 i jest prostopadła do płaszczyzny podstawy. Oblicz objętość tego ostrosłupa.

Podstawą ostrosłupa jest kwadrat ABCD o boku długości 25. Ściany boczne ABS i BCS mają takie same pola, każde równe 250. Ściany boczne ADS i CDS też mają jednakowe pola, każde równe 187,5. Krawędzie boczne AS i CS mają równe długości. Oblicz objętość tego ostrosłupa.

Podstawą ostrosłupa ABCDS jest kwadrat ABCD . Trójkąt równoramienny ASD ma ramię długości 15 i jest prostopadły do podstawy ostrosłupa. Krawędź BS ma długość 17. Oblicz cosinus kąta nachylenia płaszczyzny BCE do płaszczyzny podstawy, gdzie E jest środkiem krawędzi SA .

Podstawą ostrosłupa prawidłowego czworokątnego ABCDS jest kwadrat ABCD . Pole trójkąta równoramiennego ACS jest równe 120 oraz |AC | : |AS | = 10 : 13 . Oblicz pole powierzchni bocznej tego ostrosłupa.

W graniastosłupie prawidłowym czworokątnym ABCDEF GH przekątna AC podstawy ma długość 4. Kąt BEC jest równy 30∘ . Oblicz objętość ostrosłupa ABCDE przedstawionego na poniższym rysunku.


PIC


Podstawą ostrosłupa ABCDE jest kwadrat o boku długości 12. Spodek F wysokości EF ostrosłupa jest środkiem krawędzi AD . Wiedząc, że dwie krótsze krawędzie boczne mają tę samą długość, równą 10, oblicz tangens kąta nachylenia krawędzi EC do płaszczyzny podstawy.


ZINFO-FIGURE


Podstawą ostrosłupa ABCDE jest kwadrat ABCD . Punkt F jest środkiem krawędzi AD , odcinek EF jest wysokością ostrosłupa. Oblicz objętość ostrosłupa, jeśli wiadomo, że AE = 15,BE = 17 .


PIC


Podstawą ostrosłupa jest kwadrat ABCD o boku długości 40. Pola ścian bocznych ABS , BCS , CDS i ADS są odpowiednio równe: 740,  √ -- 24 0 5 , 260 i 400. Oblicz objętość tego ostrosłupa.

Podstawą ostrosłupa ABCDS jest kwadrat ABCD o boku długości 4. Odcinek DS jest wysokością ostrosłupa i ma długość 6. Punkt M jest środkiem odcinka DS . Oblicz pole przekroju ostrosłupa płaszczyzną BCM .

Podstawą ostrosłupa ABCDS jest kwadrat ABCD . Trójkąt równoramienny ASD ma ramię długości 15 i jest prostopadły do podstawy ostrosłupa. Krawędź BS ma długość 17. Oblicz pole przekroju ostrosłupa płaszczyzną BCE , gdzie E jest środkiem krawędzi SA .

W graniastosłupie prawidłowym czworokątnym ABCDEF GH przekątna AC podstawy ma długość 4. Kąt ACE jest równy 6 0∘ . Oblicz objętość ostrosłupa ABCDE przedstawionego na poniższym rysunku.


PIC


spinner