Na bokach i trójkąta wybrano punkty takie, że
Wyznacz wartość , dla której stosunek pola trójkąta do pola trójkąta jest najmniejszy.
Na bokach i trójkąta wybrano punkty takie, że
Wyznacz wartość , dla której stosunek pola trójkąta do pola trójkąta jest najmniejszy.
Należy zaprojektować wymiary prostokątnego ekranu smartfona, tak aby odległości tego ekranu od krótszych brzegów smartfona były równe 0,5 cm każda, a odległości tego ekranu od dłuższych brzegów smartfona były równe 0,3 cm każda (zobacz rysunek – ekran zaznaczono kolorem szarym). Sam ekran ma mieć powierzchnię . Wyznacz takie wymiary ekranu smartfona, przy których powierzchnia ekranu wraz z obramowaniem jest najmniejsza.
Należy zaprojektować wymiary prostokątnego placu zabaw, tak aby szerokość trawnika wzdłuż dłuższych brzegów placu była równa 1,5 m, a szerokość trawnika wzdłuż krótszych brzegów placu była równa 2,5 m (zobacz rysunek – plac zabaw zaznaczono kolorem szarym). Sam plac zabaw ma mieć powierzchnię . Wyznacz takie wymiary placu zabaw, przy których powierzchnia placu wraz z trawnikami jest najmniejsza.
Dany jest odcinek o długości 10. Rozpatrujemy wszystkie sześciokąty foremne i trójkąty równoboczne , których wspólny wierzchołek leży na odcinku (zobacz rysunek).
Oblicz stosunek obwodu sześciokąta do obwodu trójkąta w przypadku, gdy suma pól tych dwóch wielokątów jest najmniejsza.
Na bokach prostokąta o obwodzie 16 cm opisano, jako na średnicach, półokręgi leżące na zewnątrz prostokąta. Zbadaj, dla jakich długości boków prostokąta, pole figury ograniczonej krzywą złożoną z tych czterech półokręgów jest najmniejsze. Oblicz to pole
Bok kwadratu ma długość 1. Na bokach i wybrano odpowiednio punkty i umieszczone tak, by . Oblicz wartość , dla której pole trójkąta jest najmniejsze.
Dany jest kwadrat o boku długości 2. Na bokach i tego kwadratu wybrano – odpowiednio – punkty i , takie, że długość odcinka (zobacz rysunek). Wyznacz tę wartość , dla której pole trójkąta osiąga wartość najmniejszą. Oblicz to najmniejsze pole.
Na kole o promieniu 4 opisano trójkąt prostokątny. Oblicz długości boków tego trójkąta, którego pole jest najmniejsze.
Na kole o promieniu 12 opisano trójkąt prostokątny. Oblicz długości boków tego trójkąta, którego pole jest najmniejsze.
Na kole o promieniu 1 opisano trójkąt prostokątny. Oblicz długości boków tego trójkąta, którego pole jest najmniejsze.
Dany jest trójkąt równoboczny o boku długości . Punkty , i należą do boków , i , przy czym .
Drut o długości 72 cm rozcięto na dwa kawałki i z każdego kawałka zbudowano brzeg trójkąta równoramiennego, przy czym stosunek długości ramienia do długości podstawy w jednym trójkącie wynosi 5:8, a w drugim 13:10. Jakie obwody mają te trójkąty jeżeli suma ich pól jest najmniejsza z możliwych?
Boki i prostokąta mają długości i odpowiednio, gdzie jest ustaloną dodatnią liczbą rzeczywistą. Na bokach i wybrano odpowiednio punkty i w ten sposób, że . Oblicz dla jakiej długości odcinka pole trójkąta jest najmniejsze. Oblicz to najmniejsze pole.
Drut o długości 28 cm należy podzielić na dwie części i z jednej zrobić kwadratową ramkę, a z drugiej ramkę prostokątną, której jeden bok jest trzy razy dłuższy od drugiego. Jak należy podzielić drut, jeżeli chcemy, aby suma pól otrzymanego kwadratu i prostokąta była najmniejsza?
Suma długości dwóch boków trójkąta jest równa 12 cm, a kąt między tymi bokami ma miarę . Oblicz jakie powinny być długości boków tego trójkąta aby jego pole było największe.
Obwód trójkąta równobocznego jest równy 12 cm. Punkty , i należą odpowiednio do boków , , tego trójkąta przy czym . Zbadaj dla jakiej wartości , pole trójkąta będzie najmniejsze. Znajdź wartość tego pola.