Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Funkcje/Wielomiany/Dzielenie z resztą/Przez stopnia 1

Wyszukiwanie zadań

Dany jest wielomian  3 2 W (x) = x + cx + 7x + d .

  • Wyznacz wartości współczynników c i d wielomianu W , wiedząc, że jest podzielny przez dwumian (x+ 2) , zaś przy dzieleniu przez dwumian (x − 1) otrzymujemy resztę 3.
  • Dla c = − 5 i d = −3 rozwiąż nierówność W (x) ≤ 0 .

Dla jakich wartości parametru a reszta z dzielenia wielomianu W (x) = 2x4 − 3x3 + ax 2 + a2x + 2 przez dwumian (x − 1) jest większa od 3.

Wyznacz wartości a i b współczynników wielomianu  3 2 W (x) = x + ax + bx + 1 wiedząc, że W (2) = 7 oraz, że reszta z dzielenia W (x) przez (x − 3) jest równa 10.

Ukryj Podobne zadania

Jednym z pierwiastków wielomianu  3 2 W (x) = x + mx + nx + 2 jest liczba 1. Reszta z dzielenia wielomianu W (x) przez dwumian x + 1 jest równa 4. Oblicz współczynniki m i n .

Reszty z dzielenia wielomianu  3 2 W (x) = x − mx + 1 0mx − 8m przez dwumiany x,x − 3,x + 3 są kolejnymi wyrazami ciągu arytmetycznego. Oblicz wartość parametru m oraz pierwiastki tego wielomianu.

Ukryj Podobne zadania

Wynikiem dzielenia wielomianu  3 2 6x − 11x − 3x + 2 przez dwumian 2x + 1 jest trójmian kwadratowy postaci ax2 + bx + c . Oblicz a,b i c .

W wyniku podzielenia wielomianu W (x) przez (x + 2) otrzymujemy iloraz Q (x) i resztę 0. Jeśli natomiast podzielimy wielomian W (x) przez (x + 1) , to otrzymamy iloraz Q (x)+ 2x − 3 i resztę 2.

  • Wyznacz wielomian W (x) .
  • Rozwiąż nierówność W (x) ≤ − (x + 1 )(x + 2) .

Wielomian  4 3 2 W (x) = x + 2x − 5x + px + q jest podzielny przez dwumian (x − 2) , a przy dzieleniu przez (x + 1) daje resztę − 10 . Wyznacz p i q .

Ukryj Podobne zadania

Wielomian  4 3 2 W (x) = 3x + ax − 2x − 7x + b jest podzielny przez dwumian (x − 2) , a przy dzieleniu przez (x − 1) daje resztę 3. Wyznacz a i b .

Wielomian  4 3 2 W (x) = x + ax + bx − x+ b przy dzieleniu przez każdy z dwumianów: x + 1 , x − 2 i x + 3 daję tę samą resztę. Wyznacz a i b .

Wielomian  3 2 W (x) = x − (a+ b )x − (a − b )x − 8 jest podzielny przez dwumian (x+ 1) , a reszta z dzielenia wielomianu W (x) przez dwumian (x + 3) wynosi − 2 . Oblicz a i b , a następnie rozwiąż nierówność W (x) < 4 .

Wielomian  3 2 W (x) = 2x + mx − 22x + n jest podzielny przez każdy z dwumianów x+ 3 i x − 4 . Oblicz wartości współczynników n i m oraz rozwiąż nierówność W (x) ≥ 0 .

Ukryj Podobne zadania

Wielomian określony wzorem  3 3 2 W (x) = 2x + (m − 1)x − 11x − 2(8m + 1) jest podzielny przez dwumian (x+ 2) oraz przy dzieleniu przez dwumian (x − 1) daje resztę 12. Oblicz m i dla wyznaczonej wartości m rozwiąż nierówność W (x) ≥ 0 .

Wielomian określony wzorem  3 3 2 W (x) = 2x + (m + 2)x − 11x − 2(2m + 1) jest podzielny przez dwumian (x− 2) oraz przy dzieleniu przez dwumian (x + 1) daje resztę 6. Oblicz m oraz pierwiastki wielomianu W dla wyznaczonej wartości m .

Wielomian określony wzorem  3 3 2 W (x) = 2x + (m + 2)x − 11x − 2(2m + 1) jest podzielny przez dwumian (x− 2) oraz przy dzieleniu przez dwumian (x + 1) daje resztę 6. Oblicz m i dla wyznaczonej wartości m rozwiąż nierówność W (x) ≤ 0 .

Dany jest wielomian  3 2 W (x) = 2x + ax + bx + c . Rozwiązaniem nierówności W (x) > 0 jest zbiór ( ) − 1,− 1 ∪ (3 ,+∞ ) 2 . Wyznacz resztę z dzielenia wielomianu W (x) przez dwumian 3− 2x .

Strona 2 z 2
spinner