Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Funkcje - wykresy/Parabola/Wzór z wykresu/3 niewiadome

Wyszukiwanie zadań

Wyznacz wszystkie funkcje kwadratowe, których wykres przechodzi przez punkty (− 6,− 1) oraz (0,− 1) .

Punkty A = (− 2,6) i B = (8,16) należą do wykresu funkcji  2 f(x) = ax + bx + c . Funkcja f ma dwa miejsca zerowe, a wierzchołek paraboli będącej jej wykresem należy do prostej y = −2x + 2 . Znajdź wzór tej funkcji.

Na podstawie wykresu funkcji kwadratowej podaj jej wzór.


PIC


Ukryj Podobne zadania

Na podstawie przedstawionego fragmentu wykresu funkcji kwadratowej wyznacz jej wzór.


PIC


Wykres funkcji kwadratowej f jest styczny do prostej y = − 4 , przechodzi przez punkt (3,14 ) oraz jest symetryczny względem osi Oy .

  • Wyznacz wzór funkcji f i narysuj jej wykres.
  • Rozwiąż nierówność − 1f(x) ≥ x 2

Dany jest wykres funkcji kwadratowej y = f(x )


PIC


  • Korzystając z danych na wykresie wyznacz wzór funkcji f w postaci ogólnej.
  • Oblicz współrzędne wierzchołka paraboli.
  • Podaj zbiór rozwiązań nierówności f(x − 7) < f(− 5) .

Napisz w postaci ogólnej, kanonicznej i iloczynowej wzór funkcji kwadratowej, jeśli do wykresu tej funkcji należy punkt A = (3;0) i funkcja osiąga wartość największą równą 12 dla argumentu 1.

Ukryj Podobne zadania

Funkcja kwadratowa f dla x = − 2 przyjmuje wartość największą równą 1. Do wykresu funkcji f należy punkt A = (1,− 2) . Zapisz wzór funkcji kwadratowej f .

Funkcja kwadratowa, f dla x = − 3 przyjmuje wartość największą równą 4. Do wykresu funkcji f należy punkt A = (− 1,3) . Zapisz wzór funkcji kwadratowej f .

Dana jest funkcja kwadratowa f , której fragment wykresu przedstawiono na rysunku poniżej. Wykresem funkcji f jest parabola, której punkty przecięcia z osiami układu współrzędnych mają współrzędne całkowite.


ZINFO-FIGURE


Wyznacz zbiór wartości funkcji f .

W kartezjańskim układzie współrzędnych (x,y ) przedstawiono oś symetrii wykresu funkcji kwadratowej f (x) = ax 2 + bx + c . Przedstawiono również prostą y = − 3 , z którą wykres funkcji y = f(x) ma dokładnie jeden punkt wspólny, oraz jeden z punktów tego wykresu – A = (− 2,4)


PIC


Wyznacz wzór funkcji kwadratowej f w postaci kanonicznej.

Wierzchołki trójkąta ABC leżą na paraboli, która jest wykresem pewnej funkcji kwadratowej f (zobacz rysunek). Pole tego trójkąta jest równe 8, punkt C = (1,4) jest wierzchołkiem paraboli, a punkty A i B leżą na osi Ox . Wyznacz wzór funkcji f .


PIC


Ukryj Podobne zadania

Wierzchołki trójkąta ABC leżą na paraboli, która jest wykresem pewnej funkcji kwadratowej f (zobacz rysunek). Pole tego trójkąta jest równe 8, punkt C = (− 1,4) jest wierzchołkiem paraboli, a punkty A i B leżą na osi Ox . Wyznacz wzór funkcji f .


PIC


Znajdź wzór funkcji kwadratowej y = f (x) , której wykresem jest parabola o wierzchołku (1 ,−9 ) przechodząca przez punkt o współrzędnych (2,− 8) . Otrzymaną funkcję przedstaw w postaci kanonicznej. Oblicz jej miejsca zerowe i naszkicuj wykres.

Wykresem funkcji kwadratowej f jest parabola o wierzchołku w punkcie A = (0,3) . Punkt B = (2,0) leży na wykresie funkcji f . Wyznacz wzór funkcji f .

Wykorzystując poniższy szkic wykresu funkcji kwadratowej o równaniu f (x) = ax2 + bx + c , gdzie a ⁄= 0 określ znak następujących wyrażeń:

  • a
  • b
  • c
  • abb−cc
  • 4ac − b2

PIC

Dana jest funkcja kwadratowa f , której fragment wykresu przedstawiono w kartezjańskim układzie współrzędnych (x,y) na rysunku poniżej. Wierzchołek paraboli, która jest wykresem funkcji f , oraz punkty przecięcia paraboli z osiami układu współrzędnych mają współrzędne całkowite.


PIC


Wyznacz wzór funkcji kwadratowej f w postaci kanonicznej.

Ukryj Podobne zadania

W kartezjańskim układzie współrzędnych (x,y ) przedstawiono fragment wykresu funkcji kwadratowej f (x) = ax 2 + bx + c . Wierzchołek paraboli, która jest wykresem funkcji f , ma współrzędne (− 4,7) . Jeden z punktów przecięcia paraboli z osią Ox układu współrzędnych ma współrzędne (− 6,0) .


PIC


Wyznacz wzór funkcji kwadratowej f w postaci kanonicznej.

W kartezjańskim układzie współrzędnych (x,y ) przedstawiono fragment wykresu funkcji kwadratowej f (x) = ax 2 + bx + c . Wierzchołek paraboli, która jest wykresem funkcji f , ma współrzędne (5,− 3) . Jeden z punktów przecięcia paraboli z osią Ox układu współrzędnych ma współrzędne (4,0) .


PIC


Wyznacz wzór funkcji kwadratowej f w postaci kanonicznej.

Dana jest funkcja kwadratowa f , której fragment wykresu przedstawiono na rysunku poniżej. Wierzchołek paraboli, która jest wykresem funkcji f , oraz punkty przecięcia paraboli z osiami układu współrzędnych mają współrzędne całkowite.


PIC


Wyznacz wzór funkcji kwadratowej f w postaci kanonicznej.

Napisz wzór funkcji kwadratowej w postaci ogólnej wiedząc, że funkcja ma jedno miejsce zerowe oraz do jej wykresu należą punkty A (1,1) oraz B (2,0) .

Ukryj Podobne zadania

Parabola, która jest wykresem funkcji kwadratowej f , ma z osiami kartezjańskiego układu współrzędnych (x,y) dokładnie dwa punkty wspólne: M = (0 ,1 8) oraz N = (3,0) . Wyznacz wzór funkcji kwadratowej f .

Pewna parabola o wierzchołku W = (2,5) przecina oś Oy w punkcie A = (0,− 3) .

  • Wyznacz postać ogólną funkcji kwadratowej y = f(x ) , której wykresem jest ta parabola.
  • Rozwiąż nierówność f(x) > 0 .

Wykres funkcji kwadratowej f określonej wzorem  2 f(x) = ax + bx+ c ma z prostą o równaniu y = 6 dokładnie jeden punkt wspólny. Punkty A = (− 5,0 ) i B = (3,0) należą do wykresu funkcji f . Oblicz wartości współczynników a,b oraz c .

Wykresem funkcji f jest parabola, której wierzchołkiem jest punkt W (1,4) . Najmniejsza wartość funkcji f w przedziale ⟨− 2,2⟩ wynosi -5.

  • Przedstaw wzór funkcji f w postaci iloczynowej.
  • Rozwiąż nierówność f(x) < 0 .

Na podstawie wykresu funkcji kwadratowej podaj jej wzór w postaci ogólnej, kanonicznej oraz iloczynowej.


PIC


spinner