Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Czworokąt

Wyszukiwanie zadań

Boki AB i BC czworokąta ABCD wpisanego w okrąg są równe przekątnej AC . Kąt ∡BAD ma miarę 80∘ . Znajdź miary pozostałych kątów czworokąta ABCD .

Uzasadnij, że środki boków dowolnego czworokąta są wierzchołkami równoległoboku.

  • Jeśli środki boków czworokąta wyznaczają prostokąt, czy można stwierdzić, że czworokąt jest rombem?
  • Jeśli środki boków czworokąta wyznaczają romb, czy można stwierdzić, że czworokąt jest prostokątem?
  • Jeśli środki boków czworokąta wyznaczają kwadrat, czy można stwierdzić, że czworokąt jest kwadratem?

W trapezie prostokątnym ABCD dłuższa podstawa AB ma długość 8. Przekątna AC tego trapezu ma długość 4 i tworzy z krótszą podstawą trapezu kąt o mierze 30 ∘ (zobacz rysunek). Oblicz długość przekątnej BD tego trapezu.


PIC


Ukryj Podobne zadania

W trapezie prostokątnym ABCD dłuższa podstawa AB ma długość 15. Przekątna AC tego trapezu ma długość 6 i tworzy z krótszą podstawą trapezu kąt o mierze 30 ∘ (zobacz rysunek). Oblicz długość przekątnej BD tego trapezu.


PIC


Dany jest trapez ABCD o podstawach AB i CD . Przekątne AC i BD tego trapezu przecinają się w punkcie S (zobacz rysunek) tak, że |AS| = 3 |SC| 2 . Pole trójkąta ABS jest równe 12. Oblicz pole trójkąta CDS .


PIC


Ukryj Podobne zadania

Dany jest trapez ABCD o podstawach AB i CD . Przekątne AC i BD tego trapezu przecinają się w punkcie S (zobacz rysunek) tak, że |AS| = 4 |SC| 3 . Pole trójkąta ABS jest równe 24. Oblicz pole trójkąta CDS .


PIC


W równoległoboku ABCD punkt E jest takim punktem boku BC , że |BE | = 13|BC | . Z wierzchołka D poprowadzono prostą przecinającą bok BC w punkcie E . Proste AB i DE przecinają się w punkcie F (zobacz rysunek). Wykaż, że pole trójkąta BF E stanowi -1 12 pola równoległoboku ABCD .


PIC


Punkty K i L dzielą podstawę AB trapezu ABCD na trzy równe części, a punkty M i N dzielą podstawę CD tego trapezu na trzy równe części. Pole czworokąta LBND jest równe 12 cm 2 . Oblicz pole trapezu ABCD .


PIC


W trapezie równoramiennym ABCD przekątna BD jest prostopadła do ramienia AD (zobacz rysunek). Podstawy trapezu mają długość: |AB | = 8 cm i |CD | = 4 cm . Oblicz pole oraz miary kątów trapezu.


PIC


Ukryj Podobne zadania

W trapezie równoramiennym ABCD przekątna BD jest prostopadła do ramienia AD (zobacz rysunek). Podstawy trapezu mają długość: |AB | = 12 cm i |CD | = 6 cm . Oblicz pole oraz miary kątów trapezu.


PIC


Dany jest prostokąt ABCD . Z wierzchołków B i D poprowadzono proste prostopadłe do przekątnej AC dzielące ją na trzy odcinki AE ,EF ,F C , każdy długości 4. Oblicz długość boków prostokąta.

Na bokach AB i AD rombu ABCD wybrano odpowiednio punkty M i L w ten sposób, że |AL | = |AM | = 35|AB | . Odcinek LM jest styczny do okręgu wpisanego w romb ABCD . Punkt K jest punktem styczności okręgu wpisanego w ten romb z bokiem AD (zobacz rysunek).


PIC


Wykaż, że |AK | |KD-| = 241 .

Dany jest trapez prostokątny ABCD . Podstawa AB tego trapezu jest równa 26, a ramię BC ma długość 24. Przekątna AC tego trapezu jest prostopadła do ramienia BC (zobacz rysunek).


PIC


Oblicz długość ramienia AD .

Oblicz pole i obwód trapezu prostokątnego, w którym podstawy mają długości 13 cm i 22 cm, a tangens kąta ostrego jest równy 113 .

Przekątne trapezu ABCD przecinają się w punkcie S , jego podstawy mają długości |AB | = 12 i |CD | = 9 , a wysokość ma długość 8. Punkt K jest środkiem odcinka AS (zobacz rysunek).


PIC


Oblicz stosunek pól trójkątów ABK i CDK .

Przekątne trapezu ABCD przecinają się w punkcie S . Promień okręgu opisanego na trójkącie ostrokątnym ABS jest o 1 większy od promienia okręgu opisanego na trójkącie CDS , a długości podstaw trapezu spełniają warunek |AB | = |CD | + 1 . Wykaż, że

 √ -- |AS |2 + |BS |2 = |AB |2 + 3⋅|AS |⋅ |BS |.

Czworokąt ABCD , w którym |BC | = 4 i |CD | = 5 , jest opisany na okręgu. Przekątna AC tego czworokąta tworzy z bokiem BC kąt o mierze 60∘ , natomiast z bokiem AB – kąt ostry, którego sinus jest równy 14 . Oblicz obwód czworokąta ABCD .

Kwadratowe szklane płytki o boku długości 1 cm, połączone w jednym wierzchołku, rozsunęły się tak, że boki wychodzące z jednego wierzchołka tworzą ze sobą kąt 60∘ . Oblicz pole części wspólnej płytek. Wynik podaj z dokładnością do 0,1 cm 2 .


PIC


Oblicz pole trapezu równoramiennego o podstawach długości 10 cm i 6 cm oraz przekątnej o długości 9 cm.

W trapezie o podstawach długości 10 cm i 6 cm oraz wysokości równej 4 cm poprowadzono przekątne, które podzieliły go na cztery trójkąty. Oblicz pole każdego z otrzymanych trójkątów.

Ukryj Podobne zadania

W trapezie o podstawach długości 12 cm i 8 cm oraz wysokości równej 6 cm poprowadzono przekątne, które podzieliły go na cztery trójkąty. Oblicz pole każdego z otrzymanych trójkątów.

Dany jest trapez ABCD o podstawach AB i CD , w którym |AB | > |CD | oraz ramię BC ma długość 6. Na tym trapezie opisano okrąg o promieniu R = 5 . Miary kątów BAC i ABC tego trapezu spełniają warunek

sin-|∡BAC--|- 5- sin |∡ABC | = 8.

Oblicz pole i obwód trapezu ABCD .

Czworokąt ABCD jest wpisany w okrąg o promieniu  √ -- R = 7 2 . Kąt ADC tego czworokąta jest ostry i jego miara jest o 15 ∘ większa od miary kąta BAD . Iloczyn sinusów wszystkich kątów wewnętrznych czworokąta ABCD jest równy 3 8 . Oblicz długości przekątnych AC i BD tego czworokąta.

Strona 10 z 23
spinner