Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Ze zbioru wszystkich liczb trzycyfrowych losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A polegającego na wylosowaniu liczb, których iloczyn jest liczbą nieparzystą.

Ze zbioru {0,1,2,3,4,...,2n } gdzie n ∈ N wylosowano jednocześnie 3 liczby. Prawdopodobieństwo, że suma wylosowanych liczb jest nieparzysta wynosi 4835 . Wyznacz ile liczb było w zbiorze.

Ze zbioru liczb {1,2,3,4 ,7 ,9,10} losujemy dwie liczby (mogą się powtarzać). Oblicz prawdopodobieństwo, że suma wylosowanych liczb jest parzysta.

Ze zbioru Z = { 1,2,3,...,2n + 1} , gdzie n ∈ N wylosowano równocześnie dwie liczby. Wyznacz n , tak aby prawdopodobieństwo wylosowania liczb, których suma jest liczbą nieparzystą było większe od 713- .

Spośród liczb  1 2 3 9 1 ,2 ,3 ,...,9 wybieramy losowo trzy. Oblicz prawdopodobieństwo, że iloczyn tych liczb jest parzysty.

Liczby 1, 2, 3, 4, 5, 6, 7, 8 ustawiamy losowo w szeregu. Oblicz prawdopodobieństwo, że w tym ustawieniu suma każdych dwóch sąsiednich liczb będzie nieparzysta. Wynik podaj w postaci ułamka nieskracalnego.

Ze zbioru {1,2,3,4,...,99,1 00} wybieramy cztery różne liczby i obliczamy ich sumę. Oblicz jakie jest prawdopodobieństwo tego, że suma wybranych liczb jest nieparzysta. Wynik podaj w postaci ułamka nieskracalnego.

Ze zbioru liczb: { 1,2,3,4,...,2n } , gdzie n ∈ N i n > 2 losujemy kolejno trzy razy po jednej liczbie bez zwracania. Niech An oznacza zdarzenie: iloczyn wylosowanych liczb jest liczbą nieparzystą, a P (An ) prawdopodobieństwo zajścia zdarzenia An . Oblicz:  lim P(An ) n→ + ∞ .

Ze zbioru liczb {1,2 ,3,4,5} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A polegającego na wylosowaniu liczb, których iloczyn jest liczbą nieparzystą.

*Ukryj

Ze zbioru liczb {2,3 ,4,5,6} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A polegającego na wylosowaniu liczb, których iloczyn jest liczbą nieparzystą.

Ze zbioru liczb {1,2,3 ,4 ,5,6,7} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A polegającego na wylosowaniu liczb, których iloczyn jest liczbą parzystą.

Ze zbioru {1,2,3,4,5,6,7 ,8 ,9,10,11,12} losujemy podzbiór trójelementowy. Jakie jest prawdopodobieństwo, że iloczyn liczb będących elementami wylosowanego podzbioru jest liczbą parzystą?

Spośród liczb dwucyfrowych wybrano bez zwracania dwa razy po jednej liczbie. Oblicz prawdopodobieństwo, że dwa razy wybrano liczbę parzystą.

*Ukryj

Spośród dodatnich liczb dwucyfrowych losujemy kolejno bez zwracania dwie liczby. Oblicz prawdopodobieństwo wylosowania dwóch liczb parzystych.

Ze zbioru liczb {1,2,...,2n ,2n + 1} , (n > 0) , losujemy jednocześnie dwie liczby. Niech An oznacza zdarzenie: iloczyn wylosowanych liczb będzie liczbą parzystą. Wyznacz prawdopodobieństwo tego zdarzenia.