Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

W pewnym nadleśnictwie postanowiono wymienić drzewostan na obszarze 150 hektarów. W pierwszym roku zaplanowano wymianę na obszarze 3 hektarów i ustalono normę, według której w każdym następnym roku będzie się dokonywać wymiany na obszarze o 1 hektar większym niż w roku poprzednim.

  • Oblicz, ile lat będzie trwać wymiana drzewostanu na zaplanowanym obszarze.
  • Oblicz, o ile należałoby zwiększyć normę wymiany drzewostanu, aby skrócić cały proces o 5 lat.
  • W obu przypadkach oblicz liczbę hektarów, na których dokonana zostanie wymiana w ostatnim roku.

Taryfa dzienna zużycia energii na godzinę wynosi 20 gr, a nocna 12 gr. Ile godzin trwa taryfa nocna, a ile dzienna, jeśli wiadomo, że średnia to 18gr?

Motocyklista drogę z miasta A do miasta B pokonał ze średnią prędkością 84 km/h. Pokonanie drogi powrotnej zajęło mu o godzinę dłużej, a średnia prędkość wyniosła 56 km/h. Oblicz odległość między miastami A i B .

*Ukryj

Miejscowości A i B są połączone linią kolejową. Pociąg przebywa trasę z A do B ze średnią prędkością 80 km/h. W drodze powrotnej średnia prędkość pociągu jest większa o 20 km/h i dzięki temu pociąg pokonuje trasę od B do A w czasie o godzinę krótszym. Jaka jest długość linii kolejowej między miejscowościami A i B ?

Rozłożono 100 cukierków na 5 talerzach.
Na 1 i 2 talerzu znalazły się łącznie 52 cukierki,
na 2 i 3 talerzu 43 cukierki,
na 3 i 4 talerzu 34 cukierki,
na 4 i 5 talerzu 30 cukierków.
Ile cukierków znajdowało się na każdym talerzu?

Marta spłacała kredyt wysokości 5100 zł w ciągu jednego roku, tj. w 12 ratach. Każda kolejna rata była niższa od poprzedniej o 50 zł. Ile wynosiła pierwsza oraz ostatnia rata spłaty?

Czy okrągła serweta o średnicy 1,4 m przykryje kwadratowy stół o boku 1 m?

Klient zaciągnął w banku pożyczkę w wysokości 7200 zł. Spłatę rozłożył na 10 rat, z których każda następna jest mniejsza od poprzedniej o 60 zł. Oblicz sumę pierwszych pięciu rat.

W skarbcu królewskim było k monet. Pierwszego dnia rano skarbnik dorzucił 25 monet, a każdego następnego ranka dorzucał o 2 monety więcej niż dnia poprzedniego. Jednocześnie ze skarbca król zabierał w południe każdego dnia 50 monet. Oblicz najmniejszą liczbę k , dla której w każdym dniu w skarbcu była co najmniej jedna moneta, a następnie dla tej wartości k oblicz, w którym dniu w skarbcu była najmniejsza liczba monet.

Na diagramie przedstawiono wyniki sprawdzianu z matematyki w klasie 1a.


PIC


  • Jaki procent uczniów tej klasy otrzymał ze sprawdzianu ocenę co najmniej dostateczny?
  • O ile procent więcej uczniów otrzymało ocenę dostateczny niż ocenę celujący?
*Ukryj

Na diagramie przedstawiono wyniki sprawdzianu z matematyki w klasie 1c.


PIC


  • Jaki procent uczniów tej klasy otrzymał ze sprawdzianu ocenę co najmniej dostateczny?
  • O ile procent więcej uczniów otrzymało ocenę dostateczny niż ocenę niedostateczny?

Czterej koledzy wybrali się na wakacje nad jezioro odległe o 80 km od miejsca zamieszkania. Po przyjeździe najmłodszy z nich zobaczył, że na mapie w skali 1:400 000 powierzchnia jeziora wynosi 0,5 cm 2 . Oblicz rzeczywistą powierzchnię tego jeziora.

*Ukryj

Na mapie o skali 1:50 000 las ma powierzchnię  2 456 cm . Jaką rzeczywistą powierzchnię ma las?

Ze Szczecina do Częstochowy wybrały się dwie pielgrzymki: piesza i rowerowa. Pielgrzymka piesza wyruszyła pierwsza, pokonując każdego dnia 26 km. Po 8 dniach wyruszyła (z tego samego miejsca, tą samą trasą) pielgrzymka rowerowa, pokonując pierwszego dnia 54 km, a każdego następnego dnia o 2 kilometry mniej niż dnia poprzedniego. Pielgrzymki spotkały się dopiero u stóp Jasnej Góry. W którym dniu podróży i w jakiej odległości od miejsca wyjazdu pielgrzymka rowerowa dogoniła pielgrzymkę pieszą?

Właściciel sklepu muzycznego „Tra-la-la” kupuje w hurtowni płyty zespołu „Emotion” po 30 zł za sztukę i sprzedaje 56 sztuk miesięcznie, po 50 zł za sztukę. Badania rynku wykazały, że każda obniżka ceny płyty o 1 zł, zwiększy liczbę sprzedanych płyt o 4 sztuki (miesięcznie).

  • Wyznacz wzór funkcji miesięcznego zysku właściciela sklepu „Tra-la-la” w zależności od obniżki ceny płyty zespołu „Emotion” (w pełnych złotych). Podaj dziedzinę tej funkcji.
  • Jaką cenę płyty powinien ustalić sprzedawca, aby miesięczny zysk z jej sprzedaży był największy? Oblicz miesięczny największy zysk właściciela sklepu ze sprzedaży płyty „Emotion”.
*Ukryj

Właściciel sklepu kupuje zegarki płacąc producentowi 180 zł za sztukę. Następnie sprzedaje miesięcznie 30 sztuk takich zegarków po 230 zł. Sprzedawca oszacował, że każda obniżka ceny zegarka o złotówkę zwiększy liczbę sprzedanych zegarków o trzy sztuki. Niech x oznacza liczbę obniżek o 1 zł, gdzie x ∈ {1,2,3,...,30} .

  • Wyznacz wzór funkcji miesięcznego zysku właściciela sklepu w zależności od x .
  • Jaką cenę zegarka powinien ustalić właściciel sklepu, aby jego miesięczny zysk był największy? Ile będzie równy ten największy miesięczny zysk?

Parking wyłożono płytami betonowymi w kształcie prostokątów. Gdyby ten sam parking wyłożyć prostokątnymi płytami o powierzchni większej o 10 00 cm 2 to liczba użytych płyt zmniejszyłaby się o 8. Gdyby natomiast użyć płyt o powierzchni mniejszej o 1000 cm 2 , to liczba użytych płyt zwiększyłaby się o 12. Oblicz pole powierzchni parkingu.

Z dwóch miejscowości A i B wyruszyły naprzeciw siebie ruchem jednostajnym dwa pociągi. Po upływie trzech godzin minęły się. Pierwszy pociąg przejechał trasę z A do B w ciągu 7,5 godziny. W jakim czasie drogę z B do A przejechał drugi pociąg?

Suma cyfr liczby dwucyfrowej n jest mniejsza od 12. Różnica tej liczby i liczby dwucyfrowej otrzymanej po przestawieniu jej cyfr jest równa 36. Wyznacz możliwe wartości liczby n .

Różnica kwadratów dwóch kolejnych liczb naturalnych wynosi 13. Wyznacz te liczby.

*Ukryj

Różnica kwadratów dwóch kolejnych liczb naturalnych wynosi 17. Wyznacz te liczby.

Na początku 2002 roku zasoby węgla kamiennego w Polsce szacowane były na 64 mld ton. W 2002 roku w Polsce wydobyto 103,7 mln ton wegla. Jaki procent zasobów węgla kamiennego w naszym kraju uległby wyczerpaniu do końca 2101 roku, gdyby każdego roku wydobycie węgla wzrastało o 0,4 mln ton? Wynik zaokrąglij do pierwszego miejsca po przecinku.

Turysta zwiedzał zamek stojący na wzgórzu. Droga łącząca parking z zamkiem ma długość 2,1 km. Łączny czas wędrówki turysty z parkingu do zamku i z powrotem, nie licząc czasu poświęconego na zwiedzanie, był równy 1 godzinę i 4 minuty. Oblicz, z jaką średnią prędkością turysta wchodził na wzgórze, jeżeli prędkość ta była o 1 km/h mniejsza od średniej prędkości, z jaką schodził ze wzgórza.

*Ukryj

Turysta zwiedzał zabytkowy młyn stojący w dolinie rzeki. Droga łącząca parking z młynem ma długość 1,8 km. Łączny czas wędrówki turysty z parkingu do młyna i z powrotem, nie licząc czasu poświęconego na zwiedzanie, był równy 54 minuty. Oblicz, z jaką średnią prędkością turysta schodził w dolinę, jeżeli prędkość ta była o 0,9 km/h większa od średniej prędkości, z jaką wracał na parking.

Wazon ma kształt sześcianu, w którym wydrążony jest walec w taki sposób, że styczne górnej podstawy walca, równoległe do odpowiednich krawędzi górnej podstawy sześcianu, są odległe o 1 cm od tych krawędzi; natomiast odległość między dolną podstawą walca, a dolną podstawą sześcianu (grubość dna) jest równa 2 cm.


PIC


Wiedząc, że stosunek objętości walca do objętości sześcianu jest równy 272π56 , oblicz

  • długość krawędzi sześcianu;
  • objętość walca;
  • do jakiej wysokości wazonu (licząc od dolnej podstawy walca) będzie sięgać poziom wody, jeśli wlejemy do wazonu 125 ml wody. Wynik podaj z dokładnością do 1 mm.

Uzasadnij, że jeżeli a jest dowolną cyfrą, to mnożąc liczbę 37037 przez liczbę 3a otrzymamy liczbę, której wszystkie cyfry są równe a .

<Strona 2 z 16>>>>