Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Czworokąt

Wyszukiwanie zadań

W prostokąt ABCD wpisany jest trójkąt równoboczny AKL (patrz rysunek). Wierzchołek K leży na boku BC (K ⁄= B i K ⁄= C ), wierzchołek L leży na boku DC (L ⁄= D i L ⁄= C ). Udowodnij, że pole powierzchni trójkąta KLC równe jest sumie pól trójkątów ABK i DLA .


PIC


Dany jest prostokąt ABCD . Okrąg wpisany w trójkąt BCD jest styczny do przekątnej BD w punkcie N . Okrąg wpisany w trójkąt ABD jest styczny do boku AD w punkcie M , a środek S tego okręgu leży na odcinku MN , jak na rysunku.


PIC


Wykaż, że |MN | = |AD | .

W czworokącie wypukłym ABCD kąty przy wierzchołkach B i D są proste (zobacz rysunek).


PIC


Oblicz sinus kąta przy wierzchołku C jeżeli |AC | = 1,3|BD | .

Sinus kąta jaki tworzą przekątne prostokąta o polu 60 jest równy 15 17 . Oblicz obwód tego prostokąta.

Odcinek EF łączący środki dwóch dłuższych boków prostokąta ABCD dzieli go na dwa kwadraty, przy czym przekątna prostokąta jest o 3 dłuższa od przekątnej kwadratu. Oblicz pole prostokąta ABCD .


PIC


W deltoidzie ABCD dane są  ∘ ----√--- ∘ |AB | = 2 ,|BC | = 2 2− 3,|∡BAD | = 3 0 i |∡ABC | = 135∘ (zobacz rysunek). Oblicz pole tego deltoidu.


PIC


Kąt ostry równoległoboku ma miarę  ∘ 6 0 . Stosunek kwadratów długości przekątnych jest równy 13 . Wykaż, że ten równoległobok jest rombem.

W trapezie prostokątnym ABCD dłuższe ramię ma długość 10. Obwód tego trapezu jest równy 30. Wiedząc, że tangens kąta ostrego w trapezie ABCD jest równy 43 , oblicz długości jego podstaw.

  • Uzasadnij, że sin 15∘ = √-----1∘--√- 2ctg 30 + 2
  • W równoległoboku ABCD dane są miary kątów |∡ABD | = 30∘ i |∡CAB | = 15∘ . Oblicz miarę kąta DAC .

W trapez równoramienny o obwodzie 60 wpisano okrąg. Przekątna trapezu ma długość 17. Oblicz pole trapezu.

Dany jest równoległobok ABCD . Na przedłużeniu przekątnej AC wybrano punkt E tak, że |CE | = 12|AC | (zobacz rysunek). Uzasadnij, że pole równoległoboku ABCD jest cztery razy większe od pola trójkąta DCE .


PIC


Ukryj Podobne zadania

Na przekątnej AC równoległoboku ABCD wybrano punkt E (zobacz rysunek). Uzasadnij, że trójkąty ABE i ADE mają równe pola.


PIC


Pole prostokąta jest równe  2 8 cm . Wyznacz jeden z boków prostokąta, jako funkcję drugiego boku i naszkicuj wykres tej funkcji. Podaj dziedzinę i zbiór wartości tej funkcji.

Punkt P jest punktem przecięcia przekątnych trapezu ABCD . Długość podstawy CD jest o 2 mniejsza od długości podstawy AB . Promień okręgu opisanego na trójkącie ostrokątnym CP D jest o 3 mniejszy od promienia okręgu opisanego na trójkącie AP B . Wykaż, że spełniony jest warunek  2 2 2 4√ 2 |DP | + |CP | − |CD | = --3-⋅|DP |⋅|CP | .

Dany jest czworokąt ABCD , w którym AB ∥ CD . Na boku BC wybrano taki punkt E , że |EC | = |CD | i |EB | = |BA | . Wykaż, że kąt AED jest prosty.

W równoległoboku ABCD środek P boku CD połączono odcinkami z wierzchołkami A i B . Wiadomo, że |AP | = 12 cm i |BP | = 5 cm oraz |AB | = 2|BC | . Oblicz obwód równoległoboku.


PIC


Obwód rombu wynosi 18 cm, a jego pole  2 18 cm . Oblicz wysokość tego rombu.

Na okręgu o promieniu r opisano trapez prostokątny, którego najkrótszy bok ma długość 32r . Oblicz pole tego trapezu oraz stosunek długości jego przekątnych.

Ukryj Podobne zadania

W trapez prostokątny wpisano okrąg o promieniu r . Najkrótszy bok tego trapezu ma długość 1,5r . Oblicz pole tego trapezu.

Dwa przeciwległe boki czworokąta wpisanego w okrąg mają równe długości. Wykaż, że czworokąt ten jest trapezem.

Dany jest czworokąt wypukły ABCD . Przekątne AC oraz BD tego czworokąta przecinają się w punkcie S . Wykaż, że jeżeli |AS|-= |BS|- |DS | |CS| , to na czworokącie ABCD można opisać okrąg.

Przekątna trapezu równoramiennego tworzy z dłuższą podstawą kąt 2α , a z ramieniem kąt α . Wykaż, że stosunek pól trójkątów, na które został podzielony trapez tą przekątną, jest równy sisinn5αα .

Strona 15 z 23
spinner