Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Wyznacz zbiór wszystkich punktów płaszczyzny, jaki tworzą wierzchołki parabol o równaniu f(x) = (x − 3)2 + m , gdzie m ∈ R – parametr.

*Ukryj

Wyznacz zbiór wszystkich punktów płaszczyzny, jaki tworzą wierzchołki parabol o równaniu f(x) = − 2 (x− m)2 − 4 , gdzie m ∈ R – parametr.

Wyznacz zbiór wszystkich punktów płaszczyzny, jaki tworzą wierzchołki parabol o równaniu f(x) = − 12(x+ m )2 + 2m , gdzie m ∈ R – parametr.

Wyznacz zbiór wszystkich punktów płaszczyzny, jaki tworzą wierzchołki parabol o równaniu f(x) = 5 (x− m )2 + m , gdzie m ∈ R – parametr.

Dana jest prosta k o równaniu x + y − 12 = 0 oraz punkt M (− 5;9) wyznacz na prostej k takie punkty P i R aby |MP | = |P R| = 8 .

Znajdź zbiór środków wszystkich okręgów stycznych wewnętrznie do okręgu o równaniu x2 + y2 = 4 i stycznych do prostej o równaniu y = 0 .

Punkty A = (− 1,4) oraz B = (0,2) należą do prostej k . Punkt S ma współrzędne S = (− 2,− 4) . Oblicz współrzędne punktów należących do prostej k , których odległość od punktu S wynosi 5.

Rozpatrujemy wszystkie prostokąty o polu równym 6, których dwa sąsiednie boki zawarte są w osiach Ox i Oy układu współrzędnych. Wyznacz równanie krzywej będącej zbiorem tych wierzchołków rozpatrywanych prostokątów, które nie leżą na żadnej z osi układu współrzędnych. Narysuj tę krzywą.

Wyznacz figurę, która jest zbiorem środków cięciw paraboli  2 y = x − 1 przechodzących przez początek układu współrzędnych.

Dana jest prosta k o równaniu x + y − 12 = 0 oraz punkt M (− 5;9) wyznacz na prostej k takie punkty P i R aby |MP | = |MR | = 8 .

Na prostej y = −x wyznacz punkt, który jest równo odległy od początku układu współrzędnych oraz od punktu P = (− 2,3) .

*Ukryj

Dane są dwa punkty A = (4,− 2) i B = (− 1,3) oraz prosta k : − x+ 3y − 18 = 0 . Wyznacz współrzędne punktu C leżącego na prostej k i tak samo odległego od punktów A i B .

Dane są dwa punkty A = (− 4,2) i B = (1 ,4 ) oraz prosta k : x + 4y + 12 = 0 . Wyznacz współrzędne punktu C leżącego na prostej k i tak samo odległego od punktów A i B .

Wyznacz równanie zbioru środków wszystkich okręgów stycznych zewnętrznie do okręgu x2 + (y − 2)2 = 1 i stycznych do prostej y = − 2 .

Znajdź zbiór środków wszystkich cięciw okręgu  2 2 x + y + 4y + 3 = 0 , wyznaczonych przez proste przechodzące przez punkt P = (0,1) .

Dane są punkty A (3,0) i B(− 3,0) . Wyznacz równanie krzywej, utworzonej przez wszystkie punkty płaszczyzny, których odległość od punktu A jest 2 razy większa od odległości od punktu B . Jaką figurę opisuje ta krzywa?

Dane są punkty A = (− 1,− 2) i B = (4,8 ) . Wyznacz te punkty prostej AB , dla których różnica odległości od punktu A i odległości od punktu B jest większa niż odległość od punktu (0,0) .

Oblicz, ile jest punktów (x,y) na płaszczyźnie, których współrzędne x i y są liczbami całkowitymi spełniającymi odpowiednio nierówności: |1 79− x| < 43 i |y + 372 | < 21 .

Narysuj w układzie współrzędnych zbiór

A = {(x,y) : y ∈ ⟨− 1,3 ⟩ i y = 2x + b i b ∈ ⟨− 3,2⟩}

oraz oblicz jego pole powierzchni.

Znajdź równanie krzywej, którą tworzą wszystkie punkty jednakowo odległe od okręgu x2 + y2 − 2y = 0 i od prostej y + 1 = 0 .