Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Okrąg przecina boki czworokąta ABCD kolejno w punktach A 1,A 2,B1,B2,C 1,C2,D 1,D 2 (zobacz rysunek).


PIC


Wykaż, że jeżeli |A 1A2| = |B1B 2| = |C 1C2| = |D 1D 2| , to w czworokąt ABCD można wpisać okrąg.

W czworokącie wypukłym ABCD (zobacz rysunek poniżej) dane są kąty: |∡ADC | = |∡ABC | = 90∘ oraz |∡DCB | = 135∘ . Wykaż, że  √- |DB-|= -2- |AC | 2 .


PIC


Przekątne czworokąta ABCD są prostopadłe. Wykaż, że |AB |2 + |CD |2 = |BC |2 + |DA |2 .

Dany jest czworokąt wypukły ABCD niebędący równoległobokiem. Punkty M ,N są odpowiednio środkami boków AB i CD . Punkty P ,Q są odpowiednio środkami przekątnych AC i BD . Uzasadnij, że MQ ∥ PN .

*Ukryj

Dany jest czworokąt wypukły ABCD niebędący równoległobokiem. Punkty M ,N są odpowiednio środkami boków AB i CD . Punkty P ,Q są odpowiednio środkami przekątnych AC i BD . Uzasadnij, że czworokąt MQNP jest równoległobokiem.

Przeciwległe boki czworokąta ABCD wpisanego w okrąg przecinają się w punktach E i F (zobacz rysunek), przy czym odcinek EC jest zawarty w dwusiecznej kąta DEF , a odcinek FA jest zawarty w dwusiecznej kąta DF E . Wykaż, że |∡EDF | = 6 0∘ .


PIC


Dwusieczne czworokąta ABCD wpisanego w okrąg przecinają się w czterech różnych punktach: P,Q ,R ,S (zobacz rysunek).


PIC


Wykaż, że na czworokącie PQRS można opisać okrąg.

*Ukryj

Z wierzchołków czworokąta ABCD poprowadzono półproste, które przecinają się w wierzchołkach czworokąta PQRS wpisanego w okrąg (zobacz rysunek).


PIC


Wykaż, że jeżeli półproste AP , BP i CR są dwusiecznymi odpowiednio kątów DAB , ABC i BCD , to półprosta DR jest dwusieczną kąta CDA .

Wykaż, że jeżeli w czworokącie ABCD dwusieczne kątów przy wierzchołkach A i C przecinają dwusieczne kątów przy wierzchołkach B i D w czterech różnych punktach, to punkty te leżą na pewnym okręgu.

W czworokącie wypukłym ABCD poprowadzono przekątną AC . Okręgi wpisane w trójkąty ABC i ACD są styczne zewnętrznie. Wykaż, że w czworokąt ABCD można wpisać okrąg.

Udowodnij, że jeżeli środki boków dwóch czworokątów wypukłych pokrywają się, to pola tych czworokątów są równe.

W czworokącie ABCD spełniony jest warunek |∡ADB | = |∡ACB | . Wykaż, że na czworokącie ABCD można opisać okrąg.

Wykaż, że jeżeli każda przekątna czworokąta wypukłego dzieli go na trójkąty o równych polach to czworokąt ten jest równoległobokiem.

W trójkącie ABC kąt wewnętrzny przy wierzchołku A ma miarę  ∘ 50 , a kąt wewnętrzny przy wierzchołku C ma miarę 60 ∘ . Okrąg o1 przechodzi przez punkt A i przecina boki AB i AC trójkąta odpowiednio w punktach D i E . Okrąg o 2 przechodzi przez punkt B , przecina okrąg o 1 w punkcie D oraz w punkcie F leżącym wewnątrz trójkąta ABC . Ponadto okrąg o2 przecina bok BC trójkąta w punkcie G .


PIC


Udowodnij, że na czworokącie CEF G można opisać okrąg.

Czworokąt AF EC jest wpisany w okrąg i jego przekątna AE przecina okrąg opisany na trójkącie ACD w punkcie B (zobacz rysunek).


PIC


Zachodzi ponadto równość |∡BF E | = |∡CDB | . Udowodnij, że punkty F ,B i C są współliniowe.

Dany jest czworokąt wypukły ABCD niebędący równoległobokiem. Punkty M ,N są odpowiednio środkami boków AB i CD . Punkty P ,Q są odpowiednio środkami przekątnych AC i BD . Uzasadnij, że jeżeli odcinki MN i PQ są prostopadłe, to |AD | = |BC | .

*Ukryj

Wykaż, że jeżeli odcinki łączące środki przeciwległych boków czworokąta są prostopadłe, to przekątne tego czworokąta mają równe długości.

Przekątne czworokąta ABCD są prostopadłe.

  • Wykaż, że sumy kwadratów przeciwległych boków tego czworokąta są równe.
  • Wykaż, że jeżeli długości jego boków AB ,BC ,CD ,DA są kolejnymi wyrazami ciągu geometrycznego to czworokąt ten jest rombem.

Wykaż, że jeżeli dwusieczne dwóch sąsiednich kątów wewnętrznych czworokąta wypukłego są prostopadłe, to czworokąt ten jest trapezem.

W czworokącie wypukłym ABCD , długości boków AB ,BC ,AD ,DC są kolejnymi wyrazami ciągu arytmetycznego. Wykaż, że dwusieczne kątów wewnętrznych tego czworokąta przecinają się w jednym punkcie.

Uzasadnij, że środki boków dowolnego czworokąta są wierzchołkami równoległoboku.

  • Jeśli środki boków czworokąta wyznaczają prostokąt, czy można stwierdzić, że czworokąt jest rombem?
  • Jeśli środki boków czworokąta wyznaczają romb, czy można stwierdzić, że czworokąt jest prostokątem?
  • Jeśli środki boków czworokąta wyznaczają kwadrat, czy można stwierdzić, że czworokąt jest kwadratem?

Dwusieczne kątów BAD i BCD czworokąta wypukłego ABCD przecinają się w punkcie E , przy czym punkty B i E leżą po przeciwnych stronach prostej AC (zobacz rysunek).


PIC


Wykaż, że |∡ABC |− |∡ADC |+ 2 ⋅|∡AEC | = 3 60∘ .

Uzasadnij, że środki boków dowolnego czworokąta są wierzchołkami równoległoboku. Jaka figurę otrzymamy, łącząc kolejno środki boków: a) rombu, b) prostokąta, c) kwadratu?

*Ukryj

Uzasadnij, że środki boków dowolnego czworokąta są wierzchołkami równoległoboku.

Strona 1 z 2>