Okrąg przecina boki czworokąta kolejno w punktach (zobacz rysunek).
Wykaż, że jeżeli , to w czworokąt można wpisać okrąg.
Okrąg przecina boki czworokąta kolejno w punktach (zobacz rysunek).
Wykaż, że jeżeli , to w czworokąt można wpisać okrąg.
W czworokącie wypukłym (zobacz rysunek poniżej) dane są kąty: oraz . Wykaż, że .
Przekątne czworokąta są prostopadłe. Wykaż, że .
Dany jest czworokąt wypukły niebędący równoległobokiem. Punkty są odpowiednio środkami boków i . Punkty są odpowiednio środkami przekątnych i . Uzasadnij, że .
Dany jest czworokąt wypukły niebędący równoległobokiem. Punkty są odpowiednio środkami boków i . Punkty są odpowiednio środkami przekątnych i . Uzasadnij, że czworokąt jest równoległobokiem.
Przeciwległe boki czworokąta wpisanego w okrąg przecinają się w punktach i (zobacz rysunek), przy czym odcinek jest zawarty w dwusiecznej kąta , a odcinek jest zawarty w dwusiecznej kąta . Wykaż, że .
Dwusieczne czworokąta wpisanego w okrąg przecinają się w czterech różnych punktach: (zobacz rysunek).
Wykaż, że na czworokącie można opisać okrąg.
Z wierzchołków czworokąta poprowadzono półproste, które przecinają się w wierzchołkach czworokąta wpisanego w okrąg (zobacz rysunek).
Wykaż, że jeżeli półproste i są dwusiecznymi odpowiednio kątów i , to półprosta jest dwusieczną kąta .
Wykaż, że jeżeli w czworokącie dwusieczne kątów przy wierzchołkach i przecinają dwusieczne kątów przy wierzchołkach i w czterech różnych punktach, to punkty te leżą na pewnym okręgu.
W czworokącie wypukłym poprowadzono przekątną . Okręgi wpisane w trójkąty i są styczne zewnętrznie. Wykaż, że w czworokąt można wpisać okrąg.
Przekątne czworokąta wpisanego w okrąg przecinają się w punkcie , a punkt jest takim punktem przekątnej , że (zobacz rysunek).
Wykaż, że .
Udowodnij, że jeżeli środki boków dwóch czworokątów wypukłych pokrywają się, to pola tych czworokątów są równe.
W czworokącie spełniony jest warunek . Wykaż, że na czworokącie można opisać okrąg.
Wykaż, że jeżeli każda przekątna czworokąta wypukłego dzieli go na trójkąty o równych polach to czworokąt ten jest równoległobokiem.
W trójkącie kąt wewnętrzny przy wierzchołku ma miarę , a kąt wewnętrzny przy wierzchołku ma miarę . Okrąg przechodzi przez punkt i przecina boki i trójkąta odpowiednio w punktach i . Okrąg przechodzi przez punkt , przecina okrąg w punkcie oraz w punkcie leżącym wewnątrz trójkąta . Ponadto okrąg przecina bok trójkąta w punkcie .
Udowodnij, że na czworokącie można opisać okrąg.
Czworokąt jest wpisany w okrąg i jego przekątna przecina okrąg opisany na trójkącie w punkcie (zobacz rysunek).
Zachodzi ponadto równość . Udowodnij, że punkty i są współliniowe.
Dany jest czworokąt wypukły niebędący równoległobokiem. Punkty są odpowiednio środkami boków i . Punkty są odpowiednio środkami przekątnych i . Uzasadnij, że jeżeli odcinki i są prostopadłe, to .
Wykaż, że jeżeli odcinki łączące środki przeciwległych boków czworokąta są prostopadłe, to przekątne tego czworokąta mają równe długości.
Przekątne czworokąta są prostopadłe.
Wykaż, że jeżeli dwusieczne dwóch sąsiednich kątów wewnętrznych czworokąta wypukłego są prostopadłe, to czworokąt ten jest trapezem.
W czworokącie wypukłym , długości boków są kolejnymi wyrazami ciągu arytmetycznego. Wykaż, że dwusieczne kątów wewnętrznych tego czworokąta przecinają się w jednym punkcie.
Uzasadnij, że środki boków dowolnego czworokąta są wierzchołkami równoległoboku.
Dwusieczne kątów i czworokąta wypukłego przecinają się w punkcie , przy czym punkty i leżą po przeciwnych stronach prostej (zobacz rysunek).
Wykaż, że .