Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Czworokąt

Wyszukiwanie zadań

W trapezie ABCD o podstawach AB i CD dane są długości przekątnych |AC | = 8 i |BD | = 1 2 oraz pola PABG = 18 i PCDG = 2 . Punkty E i F są środkami odpowiednio przekątnych BD i AC .


PIC


Oblicz pole trapezu ABEF .

Ukryj Podobne zadania

W trapezie ABCD o podstawach AB i CD dane są długości przekątnych |AC | = 20 i |BD | = 3 0 oraz pola PABG = 98 i PCDG = 1 8 . Punkty E i F są środkami odpowiednio przekątnych BD i AC .


PIC


Oblicz pole trójkąta FEG .

Pole trapezu jest równe S , a stosunek długości jego podstaw wynosi k . Przekątne dzielą trapez na cztery trójkąty. Oblicz pole każdego z tych trójkątów.

Na czworokącie wypukłym ABCD można opisać okrąg. Wiadomo, że  √ -- √ -- |AB | = |BC |, |AD | = 2 3, |DC | = 3− 3 oraz przekątna  √ -- |AC | = 3 2 . Oblicz pole tego czworokąta.

W trapezie ABCD mamy AB ∥ CD oraz |AB | > |CD | . Punkt O jest środkiem ramienia BC , a punkt S jest punktem wspólnym prostych AB OD . Udowodnij, że pole trójkąta BOS jest równe polu trójkąta OCD .

Obwód prostokąta wynosi 60 cm. Jeśli krótszy bok tego prostokąta zwiększymy o 3 cm, a dłuższy skrócimy o 3 cm, to otrzymamy kwadrat. Wyznacz kąt pomiędzy przekątną, a dłuższym bokiem prostokąta. Wynik podaj z dokładnością do 1∘ .

Ukryj Podobne zadania

Obwód prostokąta wynosi 32 cm. Jeśli krótszy bok tego prostokąta zwiększymy o 3 cm, a dłuższy skrócimy o 3 cm, to otrzymamy kwadrat. Wyznacz kąt pomiędzy przekątną, a dłuższym bokiem prostokąta. Wynik podaj z dokładnością do 1∘ .

Bok kwadratu ABCD ma długość równą 12. Punkt S jest środkiem boku BC tego kwadratu. Na odcinku AS leży punkt P taki, że odcinek BP jest prostopadły do odcinka AS . Oblicz długość odcinka BP .

Dany jest trapez równoramienny ABCD , w którym podstawa CD ma długość 6, ramię AD ma długość 4, a kąty BAD oraz ABC mają miarę 60∘ (zobacz rysunek).


ZINFO-FIGURE


Oblicz pole tego trapezu.

Ukryj Podobne zadania

Dany jest trapez równoramienny ABCD , w którym podstawa CD ma długość 8, ramię AD ma długość 6, a kąty BAD oraz ABC mają miarę 60∘ (zobacz rysunek).


ZINFO-FIGURE


Oblicz pole tego trapezu.

W okrąg o promieniu 7 wpisano czworokąt ABCD . Oblicz obwód i pole tego czworokąta, wiedząc, że |AB | = |BC | , |∡ADC | = 120∘ i stosunek pola trójkąta ABD do pola trójkąta BCD wynosi 2:1.

Trapez ABCD jest wpisany w okrąg, przekątna AC jest zawarta w dwusiecznej kąta BAD , a długość podstawy AB jest dwa razy większa niż długość podstawy CD . Oblicz pole trapezu i obwód wiedząc że jego wysokość jest równa √ 3- .

Dany jest trapez ABCD o podstawach AB i CD , w którym  √ -- |BC | = 5 2 . Okrąg opisany na trójkącie ABD przecina prostą CD w takim punkcie E , że |AE | = 10 i |∡AED | = 45∘ . Oblicz długość podstawy CD trapezu ABCD .

Wykaż, że w trapezie prostokątnym różnica kwadratów długości przekątnych równa jest różnicy kwadratów długości podstaw.

Na kwadracie ABCD opisano okrąg o promieniu r = 3 cm . Oblicz pole zacieniowanej figury.


PIC


Ukryj Podobne zadania

Na kwadracie ABCD opisano okrąg o promieniu r = 5 cm . Oblicz pole zacieniowanej figury.


PIC


W trapezie równoramiennym ABCD krótsza podstawa CD ma długość równą 6 i jest równa wysokości trapezu. Długość dłuższej podstawy AB jest równa długości przekątnej trapezu. Oblicz pole tego trapezu.


PIC


Dany jest prostokąt ABCD , w którym  √ -- |AB | = 24 5 . Na przekątnej BD leży punkt E taki, że |DE | : |EB | = 3 : 2 oraz  √ ---- |AE | = 2 2 69 . Oblicz pole prostokąta ABCD .

Podstawy trapezu prostokątnego mają długości a = 1 0 cm i b = 6 cm , zaś bok prostopadły do podstaw ma długość c = 3 cm .

  • Oblicz odległość punktu przecięcia się przekątnych tego trapezu od podstawy długości a i ramienia długości c .
  • Czy w trapez można wpisać okrąg? Odpowiedź uzasadnij.

Trapez równoramienny jest opisany na okręgu. Obwód trapezu wynosi 16cm, a przekątna ma długość  √ -- 2 5 . Oblicz długości boków tego trapezu.

Oblicz pole trapezu ABCD , którego podstawy mają długości |AB | = 11 i |CD | = 5 , a ramiona mają długości |AD | = 3 i |BC | = 6 .

W trapezie równoramiennym o podstawach długości 20 i 40, oraz kącie ostrym o mierze 30∘ połączono środki wszystkich boków. Oblicz pole otrzymanego czworokąta.

W trapezie ABCD dane są długości podstaw: |AB | = 10 , |CD | = 5 i ramion: |DA | = 4 , |BC | = 7 . Oblicz długość przekątnej AC tego trapezu.

Obwód rombu wynosi 68 cm, a długość jednej z jego przekątnych stanowi 187,5% długości drugiej przekątnej. Oblicz pole tego rombu.

Strona 7 z 23
spinner