Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Czworokąt

Wyszukiwanie zadań

Punkt P należy do okręgu opisanego na kwadracie ABCD . Wykaż, że wyrażenie |PA |2 + |P B|2 + |PC |2 + |PD |2 ma stałą wartość, niezależną od wyboru punktu P .

Dany jest prostokąt ABCD , w którym |AD | = 2 . Kąt BDA ma miarę α , taką, że tgα = 2 . Przekątna BD i prosta przechodząca przez wierzchołek C prostopadła do BD przecinają się w punkcie E (zobacz rysunek).


ZINFO-FIGURE


Oblicz długość odcinka CE .

W trapezie ABCD o podstawach AB i CD punkt O jest punktem wspólnym przekątnych. Oblicz pole trapezu wiedząc, że pole trójkąta ABO jest równe 5, a pole trójkąta CDO jest równe 4.

W trapezie ABCD ramię AD i podstawa CD mają długość 4, a ramię BC i przekątna AC mają długość 6. Oblicz długość podstawy AB .

W równoległoboku ABCD kąt ostry DAB ma miarę  ∘ 30 , zaś dłuższy bok ma długość 8. Promień okręgu opisanego na trójkącie ABD ma długość 4. Oblicz pole równoległoboku.

Z przeciwległych wierzchołków prostokąta poprowadzono odcinki prostopadłe do przekątnej. Odcinki te dzielą przekątną na trzy części. Każda z nich jest odcinkiem o długości 4 cm. Oblicz pole tego prostokąta.

W okrąg wpisano trapez równoramienny ABCD , którego podstawy mają długości: |AB | = 8 cm , |DC | = 4 cm . Styczna do okręgu w punkcie D przecina prostą AB w punkcie E (rys). Wiedząc, że  √ -- |DE | = 6 5 cm oblicz promień okręgu opisanego na trapezie ABCD .


PIC


Podstawy trapezu równoramiennego mają długości a i b , a jego przekątna ma długość d . Wyznacz cosinus kąta między przekątnymi tego trapezu.

Podstawy trapezu prostokątnego ABCD mają długości: |AB | = 12 oraz |CD | = 6 . Wysokość AD tego trapezu ma długość 24. Na odcinku AD leży punkt E taki, że |∡BEA | = |∡CED | (zobacz rysunek).


ZINFO-FIGURE


Oblicz długość odcinka BE .

Dany jest trapez ABCD o podstawach AB i CD . Przekątne tego trapezu przecinają się w punkcie S . Wykaż, że |SA |⋅|SD | = |SB |⋅|SC | .

W trapezie ABCD o podstawach AB i CD punkt O jest punktem wspólnym przekątnych. Oblicz pole trapezu wiedząc, że pole trójkąta ABO jest równe t , a pole trójkąta CDO jest równe r .

Dany jest prostokąt ABCD , w którym |AB | = 10 , |BC | = 6 . Odcinek AE jest wysokością trójkąta DAB opuszczoną na jego bok BD . Oblicz pole trójkąta AED .

W okrąg o średnicy 26 wpisano trapez równoramienny w ten sposób, że suma kwadratów długości jego podstaw jest równa 914, a sinus kąta ostrego wynosi 1123 . Oblicz pole tego trapezu.

Punkt E jest punktem wspólnym dwusiecznych kątów ABC i BCD trapezu ABCD o podstawach AB i CD . Punkt F jest środkiem odcinka BC (zobacz rysunek).


PIC


Wykaż, że |BC | = 2|EF | .

Na bokach AD , AB i BC kwadratu ABCD wybrano punkty K , L i M w ten sposób, że KL ∥ DB i LM ∥ AC . Uzasadnij, że |LK |+ |LM | = |AC | .


PIC


Na okręgu o promieniu 8 cm opisano trapez. Kąty, które tworzą ramiona z dłuższą podstawą mają miarę 30∘ . Oblicz pole tego trapezu.

W trapezie prostokątnym ABCD na rysunku poniżej dane są: |AD | = 8 cm ,|DC | = 7 cm oraz |AC | = 13 cm .


PIC


Oblicz:

  • miarę kąta ostrego trapezu przy wierzchołku A ,
  • długość odcinka łączącego środki ramion tego trapezu.

Prosta przechodząca przez środek S kwadratu ABCD przecina proste zawierające jego boki AB i AD odpowiednio w punktach K i L (zobacz rysunek).


PIC


Wykaż, że

--1---+ --1---= ---4--. |SL |2 |SK |2 |AB |2

Na rysunku przedstawiono trapez ABCD i trójkąt AF D . Punkt E leży w połowie odcinka BC . Uzasadnij, że pole trapezu ABCD i pole trójkąta AF D są równe.


PIC


Oblicz pole trapezu, którego podstawy mają długości 2 i 3, a przekątne długości 3 i 4.

Strona 8 z 23
spinner