Ze zbioru liczb , dla losujemy bez zwracania dwie liczby i . Oblicz jeżeli wiadomo, że prawdopodobieństwo tego, że wylosowane liczby i spełniają nierówność
jest równe .
Ze zbioru liczb , dla losujemy bez zwracania dwie liczby i . Oblicz jeżeli wiadomo, że prawdopodobieństwo tego, że wylosowane liczby i spełniają nierówność
jest równe .
Niech będzie liczbą naturalną. Ze zbioru liczb losujemy dwie liczby (mogą być równe). Oblicz prawdopodobieństwo, że suma wylosowanych liczb będzie większa od .
Dane są dwa podzbiory zbioru liczb całkowitych:
Z każdego z nich losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczb, których iloczyn jest dodatni.
Ze zbioru pięciu liczb losujemy kolejno ze zwracaniem dwa razy po jednej liczbie. Zdarzenie polega na wylosowaniu dwóch liczb, których iloczyn jest ujemny. Oblicz prawdopodobieństwo zdarzenia .
Dane są dwa podzbiory zbioru liczb całkowitych:
Z każdego z nich losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczb, których iloczyn jest dodatni.
Dane są dwa podzbiory zbioru liczb całkowitych:
Z każdego z nich losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczb, których iloczyn jest ujemny.
Ze zbioru losujemy liczbę , a ze zbioru liczbę . Oblicz prawdopodobieństwo tego, że .
Ze zbioru losujemy liczbę , a ze zbioru liczbę . Oblicz prawdopodobieństwo tego, że .
Ze zbioru losujemy liczbę , a ze zbioru liczbę . Oblicz prawdopodobieństwo tego, że .
Ze zbioru liczb losujemy kolejno dwa razy po jednej liczbie bez zwracania. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że pierwsza z wylosowanych liczb jest nieparzysta, a ich iloczyn jest większy od 10.
Losujemy jedną liczbę całkowitą z przedziału i jedną liczbę całkowitą z przedziału . Oblicz prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczb, których iloczyn jest dodatni. Wynik podaj w postaci ułamka nieskracalnego.
Losujemy jedną liczbę całkowitą z przedziału i jedną liczbę całkowitą z przedziału . Oblicz prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczb, których iloczyn jest ujemny. Wynik podaj w postaci ułamka nieskracalnego.
Ze zbioru liczb losujemy bez zwracania dwie i od pierwszej odejmujemy drugą. Oblicz prawdopodobieństwo, że otrzymana różnica jest większa od 2.
Spośród liczb: -9, -7, -5, -3, -1, 0, 2, 4, 6, 8 losujemy dwie różne liczby i , a następnie zapisujemy ich iloczyn . Oblicz i porównaj prawdopodobieństwa zdarzeń i , jeśli: oznacza zdarzenie, że iloczyn jest liczbą nieujemną; – zdarzenie, że iloczyn jest liczbą niedodatnią.
Ze zbioru losujemy ze zwracaniem dwie liczby: i . Rozważmy zdarzenia
: jest liczbą parzystą;
: .
Oblicz prawdopodobieństwo zdarzenia .
Dany jest zbiór , , . Ze zbioru losujemy kolejno bez zwracania dwie liczby. Oblicz prawdopodobieństwo, że pierwsza z wylosowanych liczb jest większa od drugiej.
Ze zbioru losujemy dwa razy (bez zwracania) po jednej liczbie. Oznaczamy te liczby w kolejności losowania przez oraz . Oblicz prawdopodobieństwo tego, że wylosowana para liczb jest rozwiązaniem nierówności .
Ze zbioru losujemy bez zwracania parę liczb . Dla jakich prawdopodobieństwo wylosowania pary spełniającej warunek jest większe od ?
Dane są dwa pudełka: czerwone i niebieskie. W każdym z tych pudełek znajduje się 10 kul ponumerowanych liczbami od 1 do 10. Z każdego pudełka losujemy jedną kulę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że numer kuli wylosowanej z czerwonego pudełka jest mniejszy od numeru kuli wylosowanej z niebieskiego pudełka.
Ze zbioru liczb losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczb, z których pierwsza jest o 2 mniejsza od drugiej.
Ze zbioru sześciu liczb losujemy ze zwracaniem kolejno dwa razy po jednej liczbie. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że pierwsza wylosowana liczba będzie większa od drugiej wylosowanej liczby.
Ze zbioru liczb losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczb, z których pierwsza jest o 3 większa od drugiej.
Ze zbioru losujemy kolejno 3 liczby (mogą się powtarzać). Wyznacz prawdopodobieństwo wyboru takiej trójki liczb, dla której .
Z ustalonego zbioru liczb rzeczywistych losujemy kolejno liczb, otrzymując ciąg różnowartościowy . Zakładając, że , oblicz prawdopodobieństwo, że ten ciąg nie jest ciągiem rosnącym.
Ze zbioru , gdzie losujemy dwie liczby (mogą się powtarzać). Oblicz jakie jest prawdopodobieństwo, że suma wartości bezwzględnych wylosowanych liczb jest nie większa niż .
Dany jest ciąg o wyrazie ogólnym , dla każdej liczby naturalnej . Ze zbioru liczb losujemy kolejno, trzy razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia – wylosujemy trzy liczby całkowite, które będą kolejnymi wyrazami ciągu malejącego.
Ze zbioru liczb naturalnych spełniających nierówność losujemy dwie różne liczby . Oblicz prawdopodobieństwo zdarzenia: punkt o współrzędnych należy do wykresu funkcji .
Dane są dwa zbiory: oraz . Losujemy jedną liczbę ze zbioru , a następnie losujemy jedną liczbę ze zbioru . Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie większa od 9.
Ze zbioru losujemy dwie różne liczby i . Oblicz prawdopodobieństwo, że