Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Wyznacz wymiary prostokąta o obwodzie 36 cm, którego pole jest największe.

*Ukryj

Z drutu o długości 320 cm zbudowano ramkę w kształcie prostokąta. Jakie powinna mieć wymiary aby pole prostokąta było największe?

Z drutu o długości 200 cm zbudowano ramkę w kształcie prostokąta. Jakie powinna mieć wymiary aby pole prostokąta było największe?

Okno na poddaszu ma mieć kształt trapezu równoramiennego, którego przekątna ma długość 6 dm. Oblicz, jakie jest największe możliwe pole powierzchni tego okna.

*Ukryj

Rozpatrujemy trapezy równoramienne ABCD o przekątnej długości 1 i sumie długości podstaw równej x . Zapisz pole trapezu ABCD jako funkcję zmiennej x . Wyznacz dziedzinę tej funkcji i oblicz sumę długości podstaw tego z rozważanych trapezów, którego pole jest największe. Oblicz to największe pole.

  • Wykaż, że dla dowolnych liczb nieujemnych a i b spełniona jest nierówność
    a-+-b- √ --- 2 ≥ ab
  • W zbiorze prostokątów wpisanych w okrąg o promieniu R znajdź prostokąt o największym polu.

Dany jest okrąg o środku S i promieniu 18. Rozpatrujemy pary okręgów: jeden o środku S1 i promieniu x oraz drugi o środku S2 i promieniu 2x , o których wiadomo, że spełniają jednocześnie następujące warunki:
– rozważane dwa okręgi są styczne zewnętrznie;
– obydwa rozważane okręgi są styczne wewnętrznie do okręgu o środku S i promieniu 18;
– punkty: S ,S1,S2 nie leżą na jednej prostej.

Pole trójkąta o bokach a ,b,c można obliczyć ze wzoru Herona

 ∘ ----------------------- P = p(p − a)(p − b )(p − c),

gdzie p – jest połową obwodu trójkąta.

Zapisz pole trójkąta SS 1S2 jako funkcję zmiennej x . Wyznacz dziedzinę tej funkcji i oblicz długości boków tego z rozważanych trójkątów, którego pole jest największe. Oblicz to największe pole.

W trójkąt prostokątny o przyprostokątnych długości 6 i 8 wpisujemy prostokąt w taki sposób, że dwa jego boki zawarte są w przyprostokątnych, a jeden z jego wierzchołków leży na przeciwprostokątnej. Zbadaj, jakie powinny być wymiary prostokąta, aby jego pole było możliwie największe.

Z odcinka drutu o długości 4 m wykonano ramkę w kształcie rombu z jedną przekątną (zobacz rysunek).


PIC


Jaka powinna być długość tej przekątnej, aby pole powierzchni tego rombu było największe możliwe?

Suma długości dwóch sąsiednich boków w pewnym trójkącie jest równa 14, a kąt między tymi bokami ma miarę π6- . Wyznacz długości boków trójkąta tak, aby jego pole było największe. Oblicz pole tego trójkąta.

W trójkąt prostokątny o kącie ostrym  ∘ 30 i przeciwprostokątnej długości 40 cm wpisujemy prostokąty w ten sposób, że jeden bok każdego z tych prostokątów zawiera się w przeciwprostokątnej trójkąta. Zbadaj który z tych prostokątów ma największe pole.

Obwód trapezu równoramiennego kącie ostrym  ∘ 6 0 równa się 2s (s > 0 ). Jakie powinny być wymiary tego trapezu, aby jego pole było największe? Oblicz to największe pole.

W kwadracie ABCD o boku długości 1 na boku AB wybrano punkt L . Na bokach BC i AD wybrano odpowiednio punkty M i K tak, że ∡KLM = 1 20∘ , a dwusieczna tego kąta jest równoległa do boku BC . Oblicz długości odcinków LK i LM , dla których pole trójkąta KLM jest największe.

W trójkąt prostokątny ABC , w którym |AB | = 2 6 , |BC | = 24 , |AC | = 10 , wpisujemy prostokąty CDEF , tak, że punkt D należy do boku AC , pkt E należy do boku AB i punkt F należy do boku BC . Oblicz wymiary prostokąta o największym polu.

Przedstawiona na rysunku figura składa się z półkola i prostokąta. Oblicz maksymalne pole tej figury, jeżeli jej obwód jest równy k .


PIC


Okno na poddaszu ma mieć kształt trapezu równoramiennego, którego krótsza podstawa i ramiona mają długość po 4 dm. Oblicz, jaką długość powinna mieć dłuższa podstawa tego trapezu, aby do pomieszczenia wpadało przez to okno jak najwięcej światła, czyli aby pole powierzchni okna było największe. Oblicz to pole.

*Ukryj

Rozważamy zbiór wszystkich trapezów równoramiennych, których krótsza podstawa i ramiona mają długość 6. Oblicz, jaką długość powinna mieć dłuższa podstawa tego trapezu, aby jego pole było największe. Oblicz to pole.

Długości boków prostokąta ABCD spełniają warunki: 2|AD | ≤ |CD | i |CD | = 3 . Na boku CD wybrano punkty E i F w ten sposób, że |DE | = |FC | = |AD | . Punkt G jest takim punktem odcinka AE , że |AG | : |GE | = 2 : 1 . Oblicz długość boku AD prostokąta, dla której pole trójkąta F GB jest największe.

Dany jest romb ABCD o boku długości 1, w którym kąt BAD jest ostry i sin ∡BAD = 17 . Na bokach AB ,AD i BC wybrano odpowiednio punkty K ,L i M w ten sposób, że odcinki KL i KM są równoległe do przekątnych rombu.

  • Oblicz pole czworokąta CDLM .
  • Oblicz największą możliwą wartość pola trójkąta KLM .

Rozpatrujemy wszystkie czworokąty ABCD , które są jednoczenie wpisane w okrąg i opisane na okręgu, w których |AB | = 2x , |BC | = 5x , i których obwód jest równy 10.

Pole czworokąta ABCD wpisanego w okrąg można obliczyć ze wzoru Brahmagupty

 ----------------------------- ∘ P = (p − a)(p − b)(p − c)(p − d ),

gdzie p – jest połową obwodu czworokąta.

Zapisz pole czworokąta ABCD jako funkcję zmiennej x . Wyznacz dziedzinę tej funkcji i oblicz długości boków tego z rozważanych czworokątów, którego pole jest największe.

Ratownicy mający do dyspozycji linę o długości 80 metrów mają wytyczyć przy brzegu plaży kąpielisko w kształcie prostokąta (wzdłuż brzegu nie będzie liny). Jakie wymiary powinno mieć to kąpielisko, jeżeli wczasowicze chcą, aby miało ono jak największą powierzchnię? Należy przyjąć, że brzeg plaży tworzy linię prostą.

Obwód okna przedstawionego na rysunku wynosi 7 m. W jakim stosunku powinny pozostawać odcinki a i b , aby przez okno wpadało jak najwięcej światła?


PIC


Dany jest trójkąt, w którym suma długości boku i wysokości opuszczonej na ten bok jest równa 8. Funkcja f przyporządkowuje długości tego boku – pole trójkąta. Wyznacz wzór tej funkcji, jej dziedzinę, największą wartość, oraz zbiór wartości funkcji.